Difference between revisions of "2005 AMC 10A Problems/Problem 25"
(added problem and solution) |
(wikify) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | In <math>ABC</math> we have <math> AB = 25 </math>, <math> BC = 39 </math>, and <math>AC=42</math>. Points <math>D</math> and <math>E</math> are on <math>AB</math> and <math>AC</math> respectively, with <math> AD = 19 </math> and <math> AE = 14 </math>. What is the ratio of the area of triangle <math>ADE</math> to the area of the quadrilateral <math>BCED</math> | + | In <math>ABC</math> we have <math> AB = 25 </math>, <math> BC = 39 </math>, and <math>AC=42</math>. Points <math>D</math> and <math>E</math> are on <math>AB</math> and <math>AC</math> respectively, with <math> AD = 19 </math> and <math> AE = 14 </math>. What is the [[ratio]] of the area of triangle <math>ADE</math> to the area of the [[quadrilateral]] <math>BCED</math>? |
<math> \mathrm{(A) \ } \frac{266}{1521}\qquad \mathrm{(B) \ } \frac{19}{75}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{19}{56}\qquad \mathrm{(E) \ } 1 </math> | <math> \mathrm{(A) \ } \frac{266}{1521}\qquad \mathrm{(B) \ } \frac{19}{75}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{19}{56}\qquad \mathrm{(E) \ } 1 </math> | ||
==Solution== | ==Solution== | ||
− | The area of a triangle is <math>\frac{1}{2}bc\sin A</math>. | + | The [[area]] of a [[triangle]] is <math>\frac{1}{2}bc\sin A</math>. |
Using this formula: | Using this formula: | ||
Line 17: | Line 17: | ||
<math>[BCED] = 525\sin A - 133\sin A = 392\sin A</math>. | <math>[BCED] = 525\sin A - 133\sin A = 392\sin A</math>. | ||
− | Therefore, the desired ratio is <math>\frac{133\sin A}{392\sin A}=\frac{19}{56}\ | + | Therefore, the desired ratio is <math>\frac{133\sin A}{392\sin A}=\frac{19}{56}\Longrightarrow \mathrm{(D)}</math> |
==See Also== | ==See Also== |
Revision as of 15:41, 2 August 2006
Problem
In we have , , and . Points and are on and respectively, with and . What is the ratio of the area of triangle to the area of the quadrilateral ?
Solution
Using this formula:
Since the area of is equal to the area of minus the area of ,
.
Therefore, the desired ratio is