Difference between revisions of "2018 AMC 10A Problems/Problem 9"
Ishankhare (talk | contribs) |
|||
Line 27: | Line 27: | ||
{{AMC10 box|year=2018|ab=A|num-b=8|num-a=10}} | {{AMC10 box|year=2018|ab=A|num-b=8|num-a=10}} | ||
+ | {{AMC12 box|year=2018|ab=A|num-b=7|num-a=9}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:26, 8 February 2018
All of the triangles in the diagram below are similar to iscoceles triangle , in which . Each of the 7 smallest triangles has area 1, and has area 40. What is the area of trapezoid ?
Solution
Let be the area of . Note that is comprised of the small isosceles triangles and a triangle similar to with side length ratio (so an area ratio of ). Thus, we have This gives , so the area of .
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.