Difference between revisions of "2018 AMC 10A Problems/Problem 22"
Johnhankock (talk | contribs) |
Johnhankock (talk | contribs) (→Solution) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | We can say that a and b 'have' 2^3 * 3, that b and c have 2^2 * 3^2, and that c and d have 3^3 * 2. Combining 1 and 2 yields b has (at a minimum) 2^3 * 3^2, and thus a has 2^3 * 3 (and no more powers of 3 because otherwise the gcd(a,b) would be different). In addition, c has 3^3 * 2^2, and thus d has 3^3 * 2 (similar to a, we see that d cannot have any other powers of 2). We now assume 'worst case scenario', where a = 2^3 * 3 and d = 3^3 * 2. According to this base case, we have gcd(a, d) = 2 * 3 => 6. We want an extra factor between the two such that this number necessarily becomes between 70 and 100. Checking through, we see that 6 * 13 -> | + | We can say that a and b 'have' 2^3 * 3, that b and c have 2^2 * 3^2, and that c and d have 3^3 * 2. Combining 1 and 2 yields b has (at a minimum) 2^3 * 3^2, and thus a has 2^3 * 3 (and no more powers of 3 because otherwise the gcd(a,b) would be different). In addition, c has 3^3 * 2^2, and thus d has 3^3 * 2 (similar to a, we see that d cannot have any other powers of 2). We now assume 'worst case scenario', where a = 2^3 * 3 and d = 3^3 * 2. According to this base case, we have gcd(a, d) = 2 * 3 => 6. We want an extra factor between the two such that this number necessarily becomes between 70 and 100. Checking through, we see that 6 * 13 -> D is the only one that works. |
Solution by JohnHankock | Solution by JohnHankock |
Revision as of 16:07, 8 February 2018
Let and be positive integers such that , , , and . Which of the following must be a divisor of ?
Solution
We can say that a and b 'have' 2^3 * 3, that b and c have 2^2 * 3^2, and that c and d have 3^3 * 2. Combining 1 and 2 yields b has (at a minimum) 2^3 * 3^2, and thus a has 2^3 * 3 (and no more powers of 3 because otherwise the gcd(a,b) would be different). In addition, c has 3^3 * 2^2, and thus d has 3^3 * 2 (similar to a, we see that d cannot have any other powers of 2). We now assume 'worst case scenario', where a = 2^3 * 3 and d = 3^3 * 2. According to this base case, we have gcd(a, d) = 2 * 3 => 6. We want an extra factor between the two such that this number necessarily becomes between 70 and 100. Checking through, we see that 6 * 13 -> D is the only one that works.
Solution by JohnHankock