Difference between revisions of "2018 AMC 10A Problems/Problem 11"

(See Also)
Line 2: Line 2:
  
 
<math>\textbf{(A) }  42  \qquad        \textbf{(B) }  49  \qquad    \textbf{(C) }  56  \qquad  \textbf{(D) }  63 \qquad  \textbf{(E) }  84 </math>
 
<math>\textbf{(A) }  42  \qquad        \textbf{(B) }  49  \qquad    \textbf{(C) }  56  \qquad  \textbf{(D) }  63 \qquad  \textbf{(E) }  84 </math>
 +
 +
== Solution ==
  
 
== See Also ==
 
== See Also ==

Revision as of 15:42, 8 February 2018

When 7 fair standard 6-sided dice are thrown, the probability that the sum of the numbers on the top faces is 10 can be written as \[\frac{n}{6^7},\]where $n$ is a positive integer. What is $n$?

$\textbf{(A) }   42   \qquad        \textbf{(B) }   49   \qquad    \textbf{(C) }   56   \qquad   \textbf{(D) }  63 \qquad  \textbf{(E) }   84$

Solution

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png