Difference between revisions of "2018 AMC 10A Problems/Problem 12"

(Created page with "How many ordered pairs of real numbers <math>(x,y)</math> satisfy the following system of equations? \begin{align*}x+3y&=3\\ \big||x|-|y|\big|&=1\end{align*} <math>\textbf{(A)...")
 
Line 6: Line 6:
 
\textbf{(D) } 4 \qquad  
 
\textbf{(D) } 4 \qquad  
 
\textbf{(E) } 8 </math>
 
\textbf{(E) } 8 </math>
 +
 +
== See Also ==
 +
 +
{{AMC10 box|year=2018|ab=A|num-b=11|num-a=13}}
 +
{{MAA Notice}}

Revision as of 14:58, 8 February 2018

How many ordered pairs of real numbers $(x,y)$ satisfy the following system of equations? \begin{align*}x+3y&=3\\ \big||x|-|y|\big|&=1\end{align*} $\textbf{(A) } 1 \qquad  \textbf{(B) } 2 \qquad  \textbf{(C) } 3 \qquad  \textbf{(D) } 4 \qquad  \textbf{(E) } 8$

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png