Difference between revisions of "2018 AMC 12A Problems/Problem 21"

(Created page with "===Problem=== Which of the following polynomials has the greatest real root? <math>\textbf{(A) } x^{19}+2018x^{11}+1 \qquad \textbf{(B) } x^{17}+2018x^{11}+1 \q...")
 
Line 1: Line 1:
===Problem===
+
==Problem==
 
Which of the following polynomials has the greatest real root?
 
Which of the following polynomials has the greatest real root?
 
<math>\textbf{(A) }  x^{19}+2018x^{11}+1  \qquad        \textbf{(B) }  x^{17}+2018x^{11}+1  \qquad    \textbf{(C) }  x^{19}+2018x^{13}+1  \qquad  \textbf{(D) }  x^{17}+2018x^{13}+1 \qquad  \textbf{(E) }  2019x+2018 </math>
 
<math>\textbf{(A) }  x^{19}+2018x^{11}+1  \qquad        \textbf{(B) }  x^{17}+2018x^{11}+1  \qquad    \textbf{(C) }  x^{19}+2018x^{13}+1  \qquad  \textbf{(D) }  x^{17}+2018x^{13}+1 \qquad  \textbf{(E) }  2019x+2018 </math>
  
===Solution===
+
==Solution==
  
 
We can see that our real solution has to lie in the open interval <math>(-1,0)</math>. From there, note that <math>x^a < x^b</math> if a, b are odd positive integers so <math>a<b</math>, so hence it can only either be B or E(as all of the other polynomials will be larger than the polynomial B). Finally, we can see that plugging in the root of <math>2019x+2018</math> into B gives a negative, and so the answer is <math>\fbox{B}</math>. (cpma213)
 
We can see that our real solution has to lie in the open interval <math>(-1,0)</math>. From there, note that <math>x^a < x^b</math> if a, b are odd positive integers so <math>a<b</math>, so hence it can only either be B or E(as all of the other polynomials will be larger than the polynomial B). Finally, we can see that plugging in the root of <math>2019x+2018</math> into B gives a negative, and so the answer is <math>\fbox{B}</math>. (cpma213)
 +
 +
 +
==See Also==
 +
{{AMC12 box|year=2018|ab=A|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Revision as of 14:50, 8 February 2018

Problem

Which of the following polynomials has the greatest real root? $\textbf{(A) }   x^{19}+2018x^{11}+1   \qquad        \textbf{(B) }   x^{17}+2018x^{11}+1   \qquad    \textbf{(C) }   x^{19}+2018x^{13}+1   \qquad   \textbf{(D) }  x^{17}+2018x^{13}+1 \qquad  \textbf{(E) }   2019x+2018$

Solution

We can see that our real solution has to lie in the open interval $(-1,0)$. From there, note that $x^a < x^b$ if a, b are odd positive integers so $a<b$, so hence it can only either be B or E(as all of the other polynomials will be larger than the polynomial B). Finally, we can see that plugging in the root of $2019x+2018$ into B gives a negative, and so the answer is $\fbox{B}$. (cpma213)


See Also

2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png