Difference between revisions of "Multiple"

m (Multiples moved to Multiple: singular)
m
Line 1: Line 1:
A '''multiple''' of a given [[integer]] is the product of that integer with some other integer.  Thus ''k'' is a multiple of ''m'' exactly when ''k'' can be written in the form ''nm'' where ''n'' and ''m'' are integers. (In this case, ''k'' is also a multiple of ''m'' as well).  Every integer has an [[infinite]] number of multiples.  As an example, a few of the multiples of 15 are 15, 30, 45, 60, and 75.  A few of the multiples of 3 are 3, 6, 9, 12, and 15.
+
A '''multiple''' of a given [[integer]] is the product of that integer with some other integer.  Thus ''k'' is a multiple of ''m'' exactly when ''k'' can be written in the form ''nm'' where ''n'' and ''m'' are integers. (In this case, ''k'' is a multiple of <math>n</math>, as well).  Every integer has an [[infinite]] number of multiples.  As an example, a few of the multiples of 15 are 15, 30, 45, 60, and 75.  A few of the multiples of 3 are 3, 6, 9, 12, and 15.
 
An equivalent phrasing is that <math>k</math> is a multiple of <math>m</math> exactly when <math>k</math> is [[divisibility | divisble by]] <math>m</math>.
 
An equivalent phrasing is that <math>k</math> is a multiple of <math>m</math> exactly when <math>k</math> is [[divisibility | divisble by]] <math>m</math>.
  

Revision as of 10:08, 2 August 2006

A multiple of a given integer is the product of that integer with some other integer. Thus k is a multiple of m exactly when k can be written in the form nm where n and m are integers. (In this case, k is a multiple of $n$, as well). Every integer has an infinite number of multiples. As an example, a few of the multiples of 15 are 15, 30, 45, 60, and 75. A few of the multiples of 3 are 3, 6, 9, 12, and 15. An equivalent phrasing is that $k$ is a multiple of $m$ exactly when $k$ is divisble by $m$.


See also