Difference between revisions of "2016 AMC 10B Problems/Problem 1"
m (→Solution) |
|||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | Factorizing the numerator, <math>\frac{\frac{1}{a}\cdot(2+\frac{1}{2})}{a}</math> then becomes <math>\frac{\frac{5}{2}}{a^{2}}</math> which is equal to <math>\frac{5}{2}\cdot 2^2</math> which is <math>\textbf{(D) }10</math>. | + | Factorizing the numerator, <math>\frac{\frac{1}{a}\cdot(2+\frac{1}{2})}{a}</math> then becomes <math>\frac{\frac{5}{2}}{a^{2}}</math> which is equal to <math>\frac{5}{2}\cdot 2^2</math> which is <math>\boxed{\textbf{(D) }10}</math>. |
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=B|before=-|num-a=2}} | {{AMC10 box|year=2016|ab=B|before=-|num-a=2}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:07, 25 January 2018
Problem
What is the value of when ?
Solution
Factorizing the numerator, then becomes which is equal to which is .
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by - |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.