Difference between revisions of "MIE 2015/Day 1/Problem 6"
(Added solution) |
m |
||
Line 1: | Line 1: | ||
− | + | ==Problem 6== | |
Let <math>(a,b,c)</math> be a geometric progression and <math>\left(\log\left(\frac{5c}{a}\right),\log\left(\frac{3b}{5c}\right),\log\left(\frac{a}{3b}\right)\right)</math> be an arithmetic progression, both in these order, so we can say that <math>a</math>, <math>b</math> and <math>c</math>: | Let <math>(a,b,c)</math> be a geometric progression and <math>\left(\log\left(\frac{5c}{a}\right),\log\left(\frac{3b}{5c}\right),\log\left(\frac{a}{3b}\right)\right)</math> be an arithmetic progression, both in these order, so we can say that <math>a</math>, <math>b</math> and <math>c</math>: | ||
Line 14: | Line 14: | ||
− | + | ==Solution== | |
<math>(a,b,c)\implies\boxed{b^2=ac}</math> | <math>(a,b,c)\implies\boxed{b^2=ac}</math> | ||
Line 73: | Line 73: | ||
So, <math>a</math>, <math>b</math> and <math>c</math> can't be the sides of a triangle. <math>\boxed{\text{E}}</math> | So, <math>a</math>, <math>b</math> and <math>c</math> can't be the sides of a triangle. <math>\boxed{\text{E}}</math> | ||
+ | |||
+ | |||
+ | ==See also== | ||
+ | *[[Military Institute of Engineering]] | ||
+ | *[[MIE 2016]] |
Revision as of 11:54, 11 January 2018
Problem 6
Let be a geometric progression and be an arithmetic progression, both in these order, so we can say that , and :
(a) are the sides of an obtusangle triangle.
(b) are the sides of an acutangle triangle that's not equilateral.
(c) are the sides of an equilateral triangle.
(d) are the sides of a right triangle.
(e) can't be the sides of a triangle.
Solution
So we got these three relations
By these equations we can see that , so it can't be an equilateral triangle.
First, we must see if , and are the sides of a tringle.
So, , and can't be the sides of a triangle.