Difference between revisions of "2017 AMC 10A Problems/Problem 24"
Kvemparala (talk | contribs) (→Solution 1.1) |
m (→Solution 1.1) |
||
Line 41: | Line 41: | ||
We shall solve for only <math>a</math> and <math>r</math>. Since <math>10-r=100</math>, <math>r=-90</math>, and since <math>a-r=1</math>, <math>a=-89</math>. Then, | We shall solve for only <math>a</math> and <math>r</math>. Since <math>10-r=100</math>, <math>r=-90</math>, and since <math>a-r=1</math>, <math>a=-89</math>. Then, | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | f(1)&=(1-r)( | + | f(1)&=(1-r)(1^3+a\cdot1^2+1+10)\\ |
&=(91)(-77)\\ | &=(91)(-77)\\ | ||
&=\boxed{\bold{(C)}\, -7007}.\\ | &=\boxed{\bold{(C)}\, -7007}.\\ | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | |||
==Solution 2== | ==Solution 2== |
Revision as of 17:24, 8 January 2018
Contents
Problem
For certain real numbers , , and , the polynomial has three distinct roots, and each root of is also a root of the polynomial What is ?
Solution 1
must have four roots, three of which are roots of . Using the fact that every polynomial has a unique factorization into its roots, and since the leading coefficient of and are the same, we know that
where is the fourth root of . Substituting and expanding, we find that
Comparing coefficients with , we see that
(Solution 1.1 picks up here.)
Let's solve for and . Since , , so . Since , , and . Thus, we know that
Taking , we find that
Solution 1.1
A faster ending to Solution 1 is as follows. We shall solve for only and . Since , , and since , . Then,
Solution 2
We notice that the constant term of and the constant term in . Because can be factored as (where is the unshared root of , we see that using the constant term, and therefore . Now we once again write out in factored form:
.
We can expand the expression on the right-hand side to get:
Now we have .
Simply looking at the coefficients for each corresponding term (knowing that they must be equal), we have the equations:
and finally,
.
We know that is the sum of its coefficients, hence . We substitute the values we obtained for and into this expression to get .
Solution 3
Let and be the roots of . Let be the additional root of . Then from Vieta's formulas on the quadratic term of and the cubic term of , we obtain the following:
Thus .
Now applying Vieta's formulas on the constant term of , the linear term of , and the linear term of , we obtain:
Substituting for in the bottom equation and factoring the remainder of the expression, we obtain:
It follows that . But so
Now we can factor in terms of as
Then and
Hence .
Solution 4 (Slight guessing)
Let the roots of be , , and . Let the roots of be , , , and . From Vieta's, we have: The fourth root is . Since , , and are common roots, we have: Let : Note that This gives us a pretty good guess of .
Solution 5
First off, let's get rid of the term by finding . This polynomial consists of the difference of two polynomials with common factors, so it must also have these factors. The polynomial is , and must be equal to . Equating the coefficients, we get equations. We will tackle the situation one equation at a time, starting the terms. Looking at the coefficients, we get . The solution to the previous is obviously . We can now find and . , and . Finally , Solving the original problem, .
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.