Difference between revisions of "2014 AMC 10B Problems/Problem 21"
Football017 (talk | contribs) m (reverted it back... I don't know how to do it) |
(→Solution) |
||
Line 25: | Line 25: | ||
label("$C$",C,SE); | label("$C$",C,SE); | ||
label("$D$",D,SW); | label("$D$",D,SW); | ||
+ | label("$E$",DD,N); | ||
+ | label("$F$",CC,N); | ||
draw(C--CC); draw(D--DD); | draw(C--CC); draw(D--DD); | ||
</asy> | </asy> | ||
Line 55: | Line 57: | ||
label("$C$",C,SE); | label("$C$",C,SE); | ||
label("$D$",D,SW); | label("$D$",D,SW); | ||
+ | label("$D$",D,SW); | ||
+ | label("$E$",DD,SE); | ||
+ | label("$F$",CC,SW); | ||
draw(C--CC); draw(D--DD); | draw(C--CC); draw(D--DD); | ||
label("21",(CC+DD)/2,N); | label("21",(CC+DD)/2,N); |
Revision as of 18:32, 26 December 2017
Problem
Trapezoid has parallel sides of length and of length . The other two sides are of lengths and . The angles and are acute. What is the length of the shorter diagonal of ?
Solution
In the diagram, . Denote and . In right triangle , we have from the Pythagorean theorem: . Note that since , we have . Using the Pythagorean theorem in right triangle , we have .
We isolate the term in both equations, getting and
.
Setting these equal, we have . Now, we can determine that .
The two diagonals are and . Using the Pythagorean theorem again on and , we can find these lengths to be and . Since , is the shorter length, so the answer is .
See Also
2014 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.