Difference between revisions of "Legendre's Formula"

m (Part 2)
m (Part 2)
Line 14: Line 14:
 
Let the base <math>p</math> representation of <math>n</math> be <cmath>e_xe_{x-1}e_{x-2}\dots e_0</cmath> where the <math>e_i</math> are digits in base <math>p.</math> Then, the base <math>p</math> representation of <math>\left\lfloor \frac{n}{p^i}\right\rfloor</math> is <cmath>e_xe_{x-1}\dots e_{x-i}.</cmath> Note that the infinite sum of these numbers (which is <math>e_p(n!)</math>) is
 
Let the base <math>p</math> representation of <math>n</math> be <cmath>e_xe_{x-1}e_{x-2}\dots e_0</cmath> where the <math>e_i</math> are digits in base <math>p.</math> Then, the base <math>p</math> representation of <math>\left\lfloor \frac{n}{p^i}\right\rfloor</math> is <cmath>e_xe_{x-1}\dots e_{x-i}.</cmath> Note that the infinite sum of these numbers (which is <math>e_p(n!)</math>) is
  
<cmath>\begin{align*} \sum_{j=1}^{x} e_j(p^{j-1}+p^{j-2}+\cdots +1) &= \sum_{j=1}^{x} e_j \left( \frac{p^j-1}{p-1} \right) \\
+
<cmath>\begin{align*} \sum_{j=1}^{x} e_j\cdot(p^{j-1}+p^{j-2}+\cdots +1) &= \sum_{j=1}^{x} e_j \left( \frac{p^j-1}{p-1} \right) \\
 
&=\frac{\sum_{j=1}^{x} e_jp^j -\sum_{j=1}^{x} e_j}{p-1} \\
 
&=\frac{\sum_{j=1}^{x} e_jp^j -\sum_{j=1}^{x} e_j}{p-1} \\
 
&=\frac{(n-e_0)-(S_p(n)-e_0)}{p-1} \\
 
&=\frac{(n-e_0)-(S_p(n)-e_0)}{p-1} \\

Revision as of 21:24, 13 December 2017

Legendre's Formula states that

\[e_p(n!)=\sum_{i=1}^{\infty} \left\lfloor \dfrac{n}{p^i}\right\rfloor =\frac{n-S_{p}(n)}{p-1}\]

where $p$ is a prime and $e_p(n)$ is the exponent of $p$ in the prime factorization of $n$ and $S_p(n)$ is the sum of the digits of $n$ when written in base $p$.

Proofs

Part 1

We use a counting argument.

We could say that $e_p(n!)$ is equal to the number of multiples of $p$ less than $n$, or $\left\lfloor \frac{n}{p}\right\rfloor$. But the multiples of $p^2$ are only counted once, when they should be counted twice. So we need to add $\left\lfloor \frac{n}{p^2}\right\rfloor$ on. But this only counts the multiples of $p^3$ twice, when we need to count them thrice. Therefore we must add a $\left\lfloor \frac{n}{p^3}\right\rfloor$ on. We continue like this to get $e_p(n!)=\sum_{i=1}^{\infty} \left\lfloor \dfrac{n}{p^i}\right\rfloor$. This makes sense, because the terms of this series tend to 0.

Part 2

Let the base $p$ representation of $n$ be \[e_xe_{x-1}e_{x-2}\dots e_0\] where the $e_i$ are digits in base $p.$ Then, the base $p$ representation of $\left\lfloor \frac{n}{p^i}\right\rfloor$ is \[e_xe_{x-1}\dots e_{x-i}.\] Note that the infinite sum of these numbers (which is $e_p(n!)$) is

\begin{align*} \sum_{j=1}^{x} e_j\cdot(p^{j-1}+p^{j-2}+\cdots +1) &= \sum_{j=1}^{x} e_j \left( \frac{p^j-1}{p-1} \right) \\ &=\frac{\sum_{j=1}^{x} e_jp^j -\sum_{j=1}^{x} e_j}{p-1} \\ &=\frac{(n-e_0)-(S_p(n)-e_0)}{p-1} \\ &=\frac{n-S_p(n)}{p-1}. \end{align*}

This article is a stub. Help us out by expanding it.