Difference between revisions of "2005 Canadian MO Problems/Problem 5"
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let's say that an ordered triple of positive integers <math>(a,b,c)</math> is <math>n</math>- | + | Let's say that an ordered triple of positive integers <math>(a,b,c)</math> is <math>n</math>-''powerful'' if <math>a \le b \le c</math>, <math>\gcd(a,b,c) = 1</math>, and <math>a^n + b^n + c^n</math> is divisible by <math>a+b+c</math>. For example, <math>(1,2,2)</math> is 5-powerful. |
* Determine all ordered triples (if any) which are <math>n</math>-powerful for all <math>n \ge 1</math>. | * Determine all ordered triples (if any) which are <math>n</math>-powerful for all <math>n \ge 1</math>. |
Revision as of 13:38, 30 July 2006
Problem
Let's say that an ordered triple of positive integers is -powerful if , , and is divisible by . For example, is 5-powerful.
- Determine all ordered triples (if any) which are -powerful for all .
- Determine all ordered triples (if any) which are 2004-powerful and 2005-powerful, but not 2007-powerful.