Difference between revisions of "2011 AMC 8 Problems/Problem 19"
Eznutella888 (talk | contribs) m |
m (→Solution) |
||
Line 23: | Line 23: | ||
==Solution== | ==Solution== | ||
− | The figure can be divided into <math>7</math> sections. The number of rectangles with just one section is <math>3.</math> The number of rectangles with two sections is <math>5.</math> There are none with only three sections. The number of rectangles with four sections is <math>3.</math> <math>3+5+3=\boxed{\textbf{(D)}\ 11}</math> | + | The figure can be divided into <math>7</math> sections. The number of rectangles with just one section is <math>3.</math> The number of rectangles with two sections is <math>5.</math> There are none with only three sections. The number of rectangles with four sections is <math>3.</math> |
+ | |||
+ | <math>3+5+3=\boxed{\textbf{(D)}\ 11}</math> | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2011|num-b=18|num-a=20}} | {{AMC8 box|year=2011|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:56, 11 November 2017
Problem
How many rectangles are in this figure?
Solution
The figure can be divided into sections. The number of rectangles with just one section is The number of rectangles with two sections is There are none with only three sections. The number of rectangles with four sections is
See Also
2011 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.