Difference between revisions of "2013 AMC 8 Problems/Problem 15"
Liwufamily (talk | contribs) (→See Also) |
Liwufamily (talk | contribs) (→See Also) |
||
Line 3: | Line 3: | ||
Solve for s, x, and r. | Solve for s, x, and r. | ||
+ | |||
+ | If <math>3^p + 3^4 = 90</math>, <math>2^r + 44 = 76</math>, and <math>5^3 + 6^s = 1421</math>, what is the product of <math>p</math>, <math>r</math>, and <math>s</math>? | ||
+ | |||
+ | <math>\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 50 \qquad \textbf{(D)}\ 70 \qquad \textbf{(E)}\ 90</math> | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2013|num-b=14|num-a=16}} | {{AMC8 box|year=2013|num-b=14|num-a=16}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:39, 11 November 2017
Problem
Solve for s, x, and r.
If , , and , what is the product of , , and ?
See Also
2013 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.