Difference between revisions of "1983 AIME Problems/Problem 14"
m (→Solution 4(The actual quickest solution)) |
|||
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
+ | |||
+ | Note that some of these solutions assume that <math>R</math> lies on the line connecting the centers, which is not true in general. | ||
+ | |||
=== Solution 1 === | === Solution 1 === | ||
First, notice that if we reflect <math>R</math> over <math>P</math> we get <math>Q</math>. Since we know that <math>R</math> is on [[circle]] <math>B</math> and <math>Q</math> is on circle <math>A</math>, we can reflect circle <math>B</math> over <math>P</math> to get another circle (centered at a new point <math>C</math> with radius <math>6</math>) that intersects circle <math>A</math> at <math>Q</math>. The rest is just finding lengths: | First, notice that if we reflect <math>R</math> over <math>P</math> we get <math>Q</math>. Since we know that <math>R</math> is on [[circle]] <math>B</math> and <math>Q</math> is on circle <math>A</math>, we can reflect circle <math>B</math> over <math>P</math> to get another circle (centered at a new point <math>C</math> with radius <math>6</math>) that intersects circle <math>A</math> at <math>Q</math>. The rest is just finding lengths: | ||
Line 15: | Line 18: | ||
Doing routine algebra on the above equation, we find that <math>x^2=\frac{65}{2}</math>, so <math>PQ^2 = 4x^2 = \boxed{130}.</math> | Doing routine algebra on the above equation, we find that <math>x^2=\frac{65}{2}</math>, so <math>PQ^2 = 4x^2 = \boxed{130}.</math> | ||
+ | |||
=== Solution 2 (easiest)=== | === Solution 2 (easiest)=== | ||
<asy> | <asy> |
Revision as of 21:33, 5 November 2017
Problem
In the adjoining figure, two circles with radii and are drawn with their centers units apart. At , one of the points of intersection, a line is drawn in such a way that the chords and have equal length. Find the square of the length of .
Contents
Solution
Note that some of these solutions assume that lies on the line connecting the centers, which is not true in general.
Solution 1
First, notice that if we reflect over we get . Since we know that is on circle and is on circle , we can reflect circle over to get another circle (centered at a new point with radius ) that intersects circle at . The rest is just finding lengths:
Since is the midpoint of segment , is a median of triangle . Because we know that , , and , we can find the third side of the triangle using Stewart's Theorem or similar approaches. We get . So now we have a kite with , , and , and all we need is the length of the other diagonal . The easiest way it can be found is with the Pythagorean Theorem. Let be the length of . Then
Doing routine algebra on the above equation, we find that , so
Solution 2 (easiest)
Draw additional lines as indicated. Note that since triangles and are isosceles, the altitudes are also bisectors, so let .
Since triangles and are similar. If we let , we have .
Applying the Pythagorean Theorem on triangle , we have . Similarly, for triangle , we have .
Subtracting, .
Solution 3
Let . Angles , , and must add up to . By the Law of Cosines, . Also, angles and equal and . So we have
Taking the of both sides and simplifying using the cosine addition identity gives .
Solution 4 (quickest)
Let Extend the line containing the centers of the two circles to meet R and the other side of the circle the large circle.
The line segment consisting of R and the first intersection of the larger circle has length 10. The length of the diameter of the larger circle be16.
Through power of a point,
See Also
1983 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |