Difference between revisions of "2010 AMC 10A Problems/Problem 19"
(→Solution 1) |
m (→Solution 1) |
||
Line 17: | Line 17: | ||
<cmath>\frac{\sqrt{3}}{4}(r^2+r+1) = \frac{7}{10}\left(\frac{\sqrt{3}}{4}\right)(r^2+4r+1)</cmath> | <cmath>\frac{\sqrt{3}}{4}(r^2+r+1) = \frac{7}{10}\left(\frac{\sqrt{3}}{4}\right)(r^2+4r+1)</cmath> | ||
− | Simplifying this gives us <math>r^2-6r+1 = 0</math>. By [[Vieta's Formulas]] we know that the sum of the possible value of <math>r</math> is <math>\boxed{\textbf{(E)}\ 6}</math>. | + | Simplifying this gives us <math>r^2-6r+1 = 0</math>. By [[Vieta's Formulas]] (or Girard identities, or Newton-Girard identities) we know that the sum of the possible value of <math>r</math> is <math>\boxed{\textbf{(E)}\ 6}</math>. |
===Solution 2=== | ===Solution 2=== |
Revision as of 12:31, 13 August 2017
Problem
Equiangular hexagon has side lengths and . The area of is of the area of the hexagon. What is the sum of all possible values of ?
Solution
Solution 1
It is clear that is an equilateral triangle. From the Law of Cosines on triangle ABC, we get that . Therefore, the area of is .
If we extend , and so that and meet at , and meet at , and and meet at , we find that hexagon is formed by taking equilateral triangle of side length and removing three equilateral triangles, , and , of side length . The area of is therefore
.
Based on the initial conditions,
Simplifying this gives us . By Vieta's Formulas (or Girard identities, or Newton-Girard identities) we know that the sum of the possible value of is .
Solution 2
As above, we find that the area of is .
We also find by the sine triangle area formula that , and thus This simplifies to .
See also
2010 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.