Difference between revisions of "Carnot's Theorem"

(Proof)
(Corrected Carnot's Theorem)
Line 1: Line 1:
 +
"" Carnot's Theorem"" states that in a [[triangle]] <math>ABC</math>, the signed sum of [[perpendicular]] distances from the [[circumcenter]] <math>O</math> to the sides (i.e., signed lengths of the pedal lines from <math>O</math>) is:
 +
 +
<math>OO_A+OO_B+OO_C=R+r</math>
 +
 +
<asy>
 +
pair a,b,c,O,i,d,f,g;
 +
a=(0,0);
 +
b=(4,0);
 +
c=(1,3);
 +
O=circumcenter(a,b,c);
 +
i=incenter(a,b,c);
 +
draw(a--b--c--cycle);
 +
draw(circumcircle(a,b,c));
 +
draw(incircle(a,b,c));
 +
dot(i);
 +
dot(O);
 +
label("$A$",a,W);
 +
label("$B$",b,E);
 +
label("$C$",c,N);
 +
label("$I$",i,N);
 +
label("$O$",O,N);
 +
d=foot(O,b,c);
 +
dot(d);
 +
draw(O--d);
 +
label("$O_A$",d,N);
 +
draw(rightanglemark(O,d,b));
 +
f=foot(O,a,b);
 +
dot(f);
 +
draw(O--f);
 +
draw(rightanglemark(O,f,a));
 +
label("$O_C$",f,S);
 +
g=foot(O,c,a);
 +
dot(g);
 +
draw(O--g);
 +
draw(rightanglemark(O,g,a));
 +
label("$O_B$",g,W);
 +
</asy>
 +
 +
where r is the [[inradius]] and R is the [[circumradius]]. The sign of the distance is chosen to be negative iff the entire segment OO_i lies outside the triangle.
 +
Explicitly,
 +
 +
<math>OO_A+OO_B+OO_C=\frac{abc(|\cos{A}|+|\cos{B}|+|\cos{C}|)}{4|\Delta|}</math>
 +
 +
where <math>\Delta</math> is the area of triangle <math>\Delta ABC</math>.
 +
 +
 +
Weisstein, Eric W. "Carnot's Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CarnotsTheorem.html
 +
 +
 +
=Below is not Carnot's Theorem=
 +
 
'''Carnot's Theorem''' states that in a [[triangle]] <math>ABC</math> with <math>A_1\in BC</math>, <math>B_1\in AC</math>, and <math>C_1\in AB</math>, [[perpendicular]]s to the sides <math>BC</math>, <math>AC</math>, and <math>AB</math> at <math>A_1</math>, <math>B_1</math>, and <math>C_1</math> are [[concurrent]] [[iff|if and only if]] <math>A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2</math>.
 
'''Carnot's Theorem''' states that in a [[triangle]] <math>ABC</math> with <math>A_1\in BC</math>, <math>B_1\in AC</math>, and <math>C_1\in AB</math>, [[perpendicular]]s to the sides <math>BC</math>, <math>AC</math>, and <math>AB</math> at <math>A_1</math>, <math>B_1</math>, and <math>C_1</math> are [[concurrent]] [[iff|if and only if]] <math>A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2</math>.
  
==Proof==
+
====Proof====
 
'''Only if:''' Assume that the given perpendiculars are concurrent at <math>M</math>. Then, from the Pythagorean Theorem, <math>A_1B^2=BM^2-MA_1^2</math>, <math>C_1A^2=AM^2-MC_1^2</math>, <math>B_1C^2=CM^2-MB_1^2</math>, <math>A_1C^2=MC^2-MA_1^2</math>, <math>C_1B^2=MB^2-MC_1^2</math>, and <math>B_1A^2=AM^2-MB_1^2</math>. Substituting each and every one of these in and simplifying gives the desired result.
 
'''Only if:''' Assume that the given perpendiculars are concurrent at <math>M</math>. Then, from the Pythagorean Theorem, <math>A_1B^2=BM^2-MA_1^2</math>, <math>C_1A^2=AM^2-MC_1^2</math>, <math>B_1C^2=CM^2-MB_1^2</math>, <math>A_1C^2=MC^2-MA_1^2</math>, <math>C_1B^2=MB^2-MC_1^2</math>, and <math>B_1A^2=AM^2-MB_1^2</math>. Substituting each and every one of these in and simplifying gives the desired result.
  
Line 8: Line 59:
 
''' If:''' Consider the intersection of the perpendiculars from <math>A_1</math> and <math>B_1</math>. Call this intersection point <math>N</math>, and let <math>C_2</math> be the perpendicular from <math>N</math> to <math>AB</math>. From the other direction of the desired result, we have that <math>A_1B^2+C_2A^2+B_1C^2=A_1C^2+C_2B^2+B_1A^2</math>. We also have that <math>A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2</math>, which implies that <math>C_1A^2-C_1B^2=C_2A^2-C_2B^2</math>. This is a difference of squares, which we can easily factor into <math>(C_1A-C_1B)(C_1A+C_1B)=(C_2A-C_2B)(C_2A+C_2B)</math>. Note that <math>C_1A+C_1=C_2A+C_2B=AB</math>, so we have that <math>C_1A-C_1B=C_2A-C_2B</math>. This implies that <math>C_1=C_2</math>, which gives the desired result.
 
''' If:''' Consider the intersection of the perpendiculars from <math>A_1</math> and <math>B_1</math>. Call this intersection point <math>N</math>, and let <math>C_2</math> be the perpendicular from <math>N</math> to <math>AB</math>. From the other direction of the desired result, we have that <math>A_1B^2+C_2A^2+B_1C^2=A_1C^2+C_2B^2+B_1A^2</math>. We also have that <math>A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2</math>, which implies that <math>C_1A^2-C_1B^2=C_2A^2-C_2B^2</math>. This is a difference of squares, which we can easily factor into <math>(C_1A-C_1B)(C_1A+C_1B)=(C_2A-C_2B)(C_2A+C_2B)</math>. Note that <math>C_1A+C_1=C_2A+C_2B=AB</math>, so we have that <math>C_1A-C_1B=C_2A-C_2B</math>. This implies that <math>C_1=C_2</math>, which gives the desired result.
  
==Problems==
+
====Problems====
 
===Olympiad===
 
===Olympiad===
 
<math>\triangle ABC</math> is a triangle. Take points <math>D, E, F</math> on the perpendicular bisectors of <math>BC, CA, AB</math> respectively. Show that the lines through <math>A, B, C</math> perpendicular to <math>EF, FD, DE</math> respectively are concurrent. ([[1997 USAMO Problems/Problem 2|Source]])
 
<math>\triangle ABC</math> is a triangle. Take points <math>D, E, F</math> on the perpendicular bisectors of <math>BC, CA, AB</math> respectively. Show that the lines through <math>A, B, C</math> perpendicular to <math>EF, FD, DE</math> respectively are concurrent. ([[1997 USAMO Problems/Problem 2|Source]])
Line 14: Line 65:
 
==See also==
 
==See also==
  
 +
[[Carnot's Polygon Theorem]]
 +
[[Japanese Theorem]]
 
[[Category:Geometry]]
 
[[Category:Geometry]]
 
[[Category:Theorems]]
 
[[Category:Theorems]]

Revision as of 10:53, 2 August 2017

"" Carnot's Theorem"" states that in a triangle $ABC$, the signed sum of perpendicular distances from the circumcenter $O$ to the sides (i.e., signed lengths of the pedal lines from $O$) is:

$OO_A+OO_B+OO_C=R+r$

[asy] pair a,b,c,O,i,d,f,g; a=(0,0); b=(4,0); c=(1,3); O=circumcenter(a,b,c); i=incenter(a,b,c); draw(a--b--c--cycle); draw(circumcircle(a,b,c)); draw(incircle(a,b,c)); dot(i); dot(O); label("$A$",a,W); label("$B$",b,E); label("$C$",c,N); label("$I$",i,N); label("$O$",O,N); d=foot(O,b,c); dot(d); draw(O--d); label("$O_A$",d,N); draw(rightanglemark(O,d,b)); f=foot(O,a,b); dot(f); draw(O--f); draw(rightanglemark(O,f,a)); label("$O_C$",f,S); g=foot(O,c,a); dot(g); draw(O--g); draw(rightanglemark(O,g,a)); label("$O_B$",g,W); [/asy]

where r is the inradius and R is the circumradius. The sign of the distance is chosen to be negative iff the entire segment OO_i lies outside the triangle. Explicitly,

$OO_A+OO_B+OO_C=\frac{abc(|\cos{A}|+|\cos{B}|+|\cos{C}|)}{4|\Delta|}$

where $\Delta$ is the area of triangle $\Delta ABC$.


Weisstein, Eric W. "Carnot's Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CarnotsTheorem.html


Below is not Carnot's Theorem

Carnot's Theorem states that in a triangle $ABC$ with $A_1\in BC$, $B_1\in AC$, and $C_1\in AB$, perpendiculars to the sides $BC$, $AC$, and $AB$ at $A_1$, $B_1$, and $C_1$ are concurrent if and only if $A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2$.

Proof

Only if: Assume that the given perpendiculars are concurrent at $M$. Then, from the Pythagorean Theorem, $A_1B^2=BM^2-MA_1^2$, $C_1A^2=AM^2-MC_1^2$, $B_1C^2=CM^2-MB_1^2$, $A_1C^2=MC^2-MA_1^2$, $C_1B^2=MB^2-MC_1^2$, and $B_1A^2=AM^2-MB_1^2$. Substituting each and every one of these in and simplifying gives the desired result.


If: Consider the intersection of the perpendiculars from $A_1$ and $B_1$. Call this intersection point $N$, and let $C_2$ be the perpendicular from $N$ to $AB$. From the other direction of the desired result, we have that $A_1B^2+C_2A^2+B_1C^2=A_1C^2+C_2B^2+B_1A^2$. We also have that $A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2$, which implies that $C_1A^2-C_1B^2=C_2A^2-C_2B^2$. This is a difference of squares, which we can easily factor into $(C_1A-C_1B)(C_1A+C_1B)=(C_2A-C_2B)(C_2A+C_2B)$. Note that $C_1A+C_1=C_2A+C_2B=AB$, so we have that $C_1A-C_1B=C_2A-C_2B$. This implies that $C_1=C_2$, which gives the desired result.

Problems

Olympiad

$\triangle ABC$ is a triangle. Take points $D, E, F$ on the perpendicular bisectors of $BC, CA, AB$ respectively. Show that the lines through $A, B, C$ perpendicular to $EF, FD, DE$ respectively are concurrent. (Source)

See also

Carnot's Polygon Theorem Japanese Theorem