Difference between revisions of "2005 AMC 12A Problems/Problem 13"
m (→Solution) |
m (→Solution) |
||
Line 23: | Line 23: | ||
− | <math> | + | <math>(A+B) + (B+C) + (C+D) + (D+E) + (E+A) = 2(A+B+C+D+E)</math>. The sum <math>A + B + C + D + E</math> will always be <math>3 + 5 + 6 + 7 + 9 = 30</math>, so the arithmetic sequence has a sum of <math>2 \cdot 30 = 60</math>. The middle term must be the average of the five numbers, which is <math>\frac{60}{5} = 12 \Longrightarrow \mathrm{(D)}</math>. |
== See also == | == See also == |
Revision as of 16:42, 24 July 2017
Problem
In the five-sided star shown, the letters , , , and are replaced by the numbers 3, 5, 6, 7 and 9, although not necessarily in that order. The sums of the numbers at the ends of the line segments , , , , and form an arithmetic sequence, although not necessarily in that order. What is the middle term of the arithmetic sequence?
Solution
. The sum will always be , so the arithmetic sequence has a sum of . The middle term must be the average of the five numbers, which is .
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.