Difference between revisions of "2017 USAMO Problems/Problem 5"
(→Solution 1) |
(→Solution (INCOMPLETE)) |
||
Line 3: | Line 3: | ||
==Solution (INCOMPLETE)== | ==Solution (INCOMPLETE)== | ||
− | For <math>c\le 1,</math> we can label every lattice point <math>1.</math> For <math>c\le 2^{1/4},</math> we can make a "checkerboard" labeling, i.e. label <math>(x, y)</math> with <math>1</math> if <math>x+y</math> is even and <math>2</math> if <math>x+y</math> is odd. One can easily verify that these labelings satisfy the required condition. Therefore, a labeling as desired exists for all <math>0 | + | For <math>c\le 1,</math> we can label every lattice point <math>1.</math> For <math>c\le 2^{1/4},</math> we can make a "checkerboard" labeling, i.e. label <math>(x, y)</math> with <math>1</math> if <math>x+y</math> is even and <math>2</math> if <math>x+y</math> is odd. One can easily verify that these labelings satisfy the required condition. Therefore, a labeling as desired exists for all <math>0 < c\le 2^{1/4}.</math> |
Revision as of 01:35, 3 May 2017
Problem
Let denote the set of all integers. Find all real numbers such that there exists a labeling of the lattice points with positive integers for which: only finitely many distinct labels occur, and for each label , the distance between any two points labeled is at least .
Solution (INCOMPLETE)
For we can label every lattice point For we can make a "checkerboard" labeling, i.e. label with if is even and if is odd. One can easily verify that these labelings satisfy the required condition. Therefore, a labeling as desired exists for all