|
|
Line 4: |
Line 4: |
| | | |
| ==Solution== | | ==Solution== |
− | THIS SOLUTION HAS NO DIAGRAM, SOMEONE WHO HAS ASYMPTOTE SKILLS PLEASE HELP.
| |
| | | |
− | Suppose ray <math>OM</math> intersects the circumcircle of <math>BHC</math> at <math>N'</math>, and let the foot of the A-altitude of <math>ABC</math> be <math>E</math>. Note that <math>\angle BHE=90-\angle HBE=90-90+\angle C=\angle C</math>. Likewise, <math>\angle CHE=\angle B</math>. So, <math>\angle BHC=\angle BHE+\angle CHE=\angle B+\angle C</math>.
| + | {{MAA Notice}} |
− | <math>BHCN'</math> is cyclic, so <math>\angle BN'C=180-\angle BHC=180-\angle B-\angle C=\angle A</math>. Also, <math>\angle BAC=\angle A</math>. These two angles are on different circles and have the same measure, but they point to the same arc! Hence, the two circles must be congruent. (This is also a well-known result)
| |
− | | |
− | We know, since <math>M</math> is the midpoint of <math>BC</math>, that <math>OM</math> is perpendicular to <math>BC</math>. <math>AH</math> is also perpendicular to <math>BC</math>, so the two lines are parallel. <math>AN</math> is a transversal, so <math>\angle HAN=\angle ANO</math>. We wish to prove that <math>\angle ANO=\angle ADO</math>, which is equivalent to <math>AOND</math> being cyclic.
| |
− | | |
− | Now, assume that ray <math>OM</math> intersects the circumcircle of <math>ABC</math> at a point <math>P</math>. Point <math>P</math> must be the midpoint of <math>\stackrel{\frown}{BC}</math>. Also, since <math>AD</math> is an angle bisector, it must also hit the circle at the point <math>P</math>. The two circles are congruent, which implies <math>MN=MP\implies OD=DP\implies</math> ODP is isosceles. Angle ADN is an exterior angle, so <math>\angle ADN=\angle DOP+\angle DPO=2\angle DPO</math>.
| |
− | Assume WLOG that <math>\angle B>\angle C</math>. So, <math>\angle DPO=\angle APO=\frac{\angle B+\angle C}{2}-\angle C=\frac{\angle B-\angle C}{2}</math>.
| |
− | In addition, <math>\angle AON=\angle AOP=\angle AOB+\angle BOP=2\angle C+\angle A</math>. Combining these two equations, <math>\angle AON+\angle ADN=\angle B-\angle C+2\angle C+\angle A=\angle A+\angle B+\angle C=180</math>.
| |
− | | |
− | Opposite angles sum to <math>180</math>, so quadrilateral <math>AOND</math> is cyclic, and the condition is proved.
| |
− | | |
− | -william122
| |
| | | |
| ==See also== | | ==See also== |
| {{USAJMO newbox|year=2017|num-b=4|num-a=6}} | | {{USAJMO newbox|year=2017|num-b=4|num-a=6}} |