Difference between revisions of "2015 USAJMO Problems/Problem 5"
AllenWang314 (talk | contribs) (→Solution) |
|||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
+ | |||
+ | Note that lines <math>AC, AX</math> are isogonal in <math>\triangle ABD</math>, so an inversion centered at <math>A</math> with power <math>r^2=AB\cdot AD</math> composed with a reflection about the angle bisector of <math>\angle DAB</math> swaps the pairs <math>(D,B)</math> and <math>(C,X)</math>. Thus, <cmath>\frac{AD}{XD}\cdot \frac{XD}{CD}=\frac{AC}{BC}\cdot \frac{AB}{CA}\Longrightarrow (A,C;B,D)=-1</cmath>so that <math>ACBD</math> is a harmonic quadrilateral. By symmetry, if <math>Y</math> exists, then <math>(B,D;A,C)=-1</math>. We have shown the two conditions are equivalent, whence both directions follow<math>.\:\blacksquare\:</math> | ||
+ | |||
+ | == Solution 2== | ||
Note that lines <math>AC, AX</math> are isogonal in <math>\triangle ABD</math>, so an inversion centered at <math>A</math> with power <math>r^2=AB\cdot AD</math> composed with a reflection about the angle bisector of <math>\angle DAB</math> swaps the pairs <math>(D,B)</math> and <math>(C,X)</math>. Thus, <cmath>\frac{AD}{XD}\cdot \frac{XD}{CD}=\frac{AC}{BC}\cdot \frac{AB}{CA}\Longrightarrow (A,C;B,D)=-1</cmath>so that <math>ACBD</math> is a harmonic quadrilateral. By symmetry, if <math>Y</math> exists, then <math>(B,D;A,C)=-1</math>. We have shown the two conditions are equivalent, whence both directions follow<math>.\:\blacksquare\:</math> | Note that lines <math>AC, AX</math> are isogonal in <math>\triangle ABD</math>, so an inversion centered at <math>A</math> with power <math>r^2=AB\cdot AD</math> composed with a reflection about the angle bisector of <math>\angle DAB</math> swaps the pairs <math>(D,B)</math> and <math>(C,X)</math>. Thus, <cmath>\frac{AD}{XD}\cdot \frac{XD}{CD}=\frac{AC}{BC}\cdot \frac{AB}{CA}\Longrightarrow (A,C;B,D)=-1</cmath>so that <math>ACBD</math> is a harmonic quadrilateral. By symmetry, if <math>Y</math> exists, then <math>(B,D;A,C)=-1</math>. We have shown the two conditions are equivalent, whence both directions follow<math>.\:\blacksquare\:</math> |
Revision as of 14:16, 13 April 2017
Contents
Problem
Let be a cyclic quadrilateral. Prove that there exists a point
on segment
such that
and
if and only if there exists a point
on segment
such that
and
.
Solution
Note that lines are isogonal in
, so an inversion centered at
with power
composed with a reflection about the angle bisector of
swaps the pairs
and
. Thus,
so that
is a harmonic quadrilateral. By symmetry, if
exists, then
. We have shown the two conditions are equivalent, whence both directions follow
Solution 2
Note that lines are isogonal in
, so an inversion centered at
with power
composed with a reflection about the angle bisector of
swaps the pairs
and
. Thus,
so that
is a harmonic quadrilateral. By symmetry, if
exists, then
. We have shown the two conditions are equivalent, whence both directions follow
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
See Also
2015 USAJMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |