Difference between revisions of "2017 AIME II Problems/Problem 15"
The turtle (talk | contribs) (Created page with "<math>\textbf{Problem 15}</math> Tetrahedron <math>ABCD</math> has <math>AD=BC=28</math>, <math>AC=BD=44</math>, and <math>AB=CD=52</math>. For any point <math>X</math> in spa...") |
|||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
Tetrahedron <math>ABCD</math> has <math>AD=BC=28</math>, <math>AC=BD=44</math>, and <math>AB=CD=52</math>. For any point <math>X</math> in space, define <math>f(X)=AX+BX+CX+DX</math>. The least possible value of <math>f(X)</math> can be expressed as <math>m\sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>. | Tetrahedron <math>ABCD</math> has <math>AD=BC=28</math>, <math>AC=BD=44</math>, and <math>AB=CD=52</math>. For any point <math>X</math> in space, define <math>f(X)=AX+BX+CX+DX</math>. The least possible value of <math>f(X)</math> can be expressed as <math>m\sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>. | ||
− | + | ==Solution== | |
+ | |||
+ | =See Also= | ||
+ | {{AIME box|year=2017|n=II|num-b=14|num-a=16}} | ||
+ | {{MAA Notice}} |
Revision as of 12:02, 23 March 2017
Problem
Tetrahedron has , , and . For any point in space, define . The least possible value of can be expressed as , where and are positive integers, and is not divisible by the square of any prime. Find .
Solution
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.