Difference between revisions of "2017 AIME II Problems/Problem 6"
(→See Also) |
|||
Line 6: | Line 6: | ||
=See Also= | =See Also= | ||
− | {{AIME box|year=2017|n=II|num-b=5|num-a= | + | {{AIME box|year=2017|n=II|num-b=5|num-a=7}} |
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 11:53, 23 March 2017
Problem
Find the sum of all positive integers such that is an integer.
Solution
Manipulating the given expression, . The expression under the radical must be an square number for the entire expression to be an integer, so . Rearranging, . By difference of squares, . It is easy to check that those are all the factor pairs of 843. Considering each factor pair separately, is found to be and . The two values of that satisfy one of the equations are and . Summing these together, the answer is .
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.