Difference between revisions of "2017 AMC 10B Problems/Problem 17"

m (Changing back to math mode because textit does not render)
(Solution)
Line 8: Line 8:
 
==Solution==
 
==Solution==
  
The number of one-digit numbers that work is <math>\binom{10}{1}</math>, and the number of two-digit integers that work is <math>\binom{10}{2} + \binom{9}2</math>. We use similar logic for three-digit integers, four digit integers, etc. Summing, we have <math>2^{10}+2^9 - 9 - 1 - 1</math>, and we need to subtract another 1 for the 0 case, so the answer is <math>2^{10}+2^9 - 9 - 1 - 1 - 1 = \boxed{\textbf{(B) }1524}</math>.
+
Case 1: monotonous numbers with digits in ascending order
 +
 
 +
There are <math>\Sigma_{n=1}^{9} \binom{9}{n}</math> ways to choose n digits from the digits 1 to 9. For each of these ways, we can generate exactly one monotonous number by ordering the chosen digits in ascending order. Note that 0 is not included since it will always be a leading digit and that is not allowed. The sum is equivalent to <math>\Sigma_{n=0}^{9} \binom{9}{n} -\binom{9}{0} = 2^9 - 1 = 511.</math>
 +
 
 +
Case 2: monotonous numbers with digits in descending order
 +
 
 +
There are <math>\Sigma_{n=1}^{10} \binom{10}{n}</math> ways to choose n digits from the digits 0 to 9. For each of these ways, we can generate exactly one monotonous number by ordering the chosen digits in descending order. Note that 0 is included since we are allowed to end numbers with zeros. The sum is equivalent to <math>\Sigma_{n=0}^{10} \binom{10}{n} -\binom{10}{0} = 2^{10} - 1 = 1023.</math> We discard the number 0 since it is not positive. Thus there are <math>1022</math> here.
 +
 
 +
Since the 1-digit numbers 1 to 9 satisfy both case 1 and case 2, we have overcounted by 9. Thus there are <math>511+1022-9=\boxed{\textbf{B} \ 1524}</math> monotonous numbers.
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2017|ab=B|num-b=16|num-a=18}}
 
{{AMC10 box|year=2017|ab=B|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 09:56, 17 February 2017

The following problem is from both the 2017 AMC 12B #11 and 2017 AMC 10B #17, so both problems redirect to this page.

Problem

Call a positive integer $monotonous$ if it is a one-digit number or its digits, when read from left to right, form either a strictly increasing or a strictly decreasing sequence. For example, $3$, $23578$, and $987620$ are monotonous, but $88$, $7434$, and $23557$ are not. How many monotonous positive integers are there?

$\textbf{(A)}\ 1024\qquad\textbf{(B)}\ 1524\qquad\textbf{(C)}\ 1533\qquad\textbf{(D)}\ 1536\qquad\textbf{(E)}\ 2048$

Solution

Case 1: monotonous numbers with digits in ascending order

There are $\Sigma_{n=1}^{9} \binom{9}{n}$ ways to choose n digits from the digits 1 to 9. For each of these ways, we can generate exactly one monotonous number by ordering the chosen digits in ascending order. Note that 0 is not included since it will always be a leading digit and that is not allowed. The sum is equivalent to $\Sigma_{n=0}^{9} \binom{9}{n} -\binom{9}{0} = 2^9 - 1 = 511.$

Case 2: monotonous numbers with digits in descending order

There are $\Sigma_{n=1}^{10} \binom{10}{n}$ ways to choose n digits from the digits 0 to 9. For each of these ways, we can generate exactly one monotonous number by ordering the chosen digits in descending order. Note that 0 is included since we are allowed to end numbers with zeros. The sum is equivalent to $\Sigma_{n=0}^{10} \binom{10}{n} -\binom{10}{0} = 2^{10} - 1 = 1023.$ We discard the number 0 since it is not positive. Thus there are $1022$ here.

Since the 1-digit numbers 1 to 9 satisfy both case 1 and case 2, we have overcounted by 9. Thus there are $511+1022-9=\boxed{\textbf{B} \ 1524}$ monotonous numbers.

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png