Difference between revisions of "2017 AMC 12B Problems/Problem 18"
Line 4: | Line 4: | ||
<math>\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}</math> | <math>\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}</math> | ||
− | ==Solution== | + | ==Solution 1== |
<asy> | <asy> | ||
Line 44: | Line 44: | ||
Let <math>O</math> be the center of the circle. Note that <math>EC + CA = EA = \sqrt{AD^2 + DE^2} = \sqrt{(2+2+3)^2 + 5^2} = \sqrt{74}</math>. However, by Power of a Point, <math>(EC)(EC + CA) = EO^2 - R^2 = (2+3)^2 + 5^2 - 2^2 = 25 + 25 - 4 = 46 \implies EC = \frac{46}{\sqrt{74}}</math>, so <math>AC = \sqrt{74} - \frac{46}{\sqrt{74}} = \frac{28}{\sqrt{74}}</math>. Now <math>BC = \sqrt{AB^2 - AC^2} = \sqrt{4^2 - \frac{28^2}{74}} = \sqrt{\frac{16 \cdot 74 - 28^2}{74}} = \sqrt{\frac{1184 - 784}{74}} = \frac{20}{\sqrt{74}}</math>. Since <math>\angle ACB = 90^{\circ}, [ABC] = \frac{1}{2} \cdot BC \cdot AC = \frac{1}{2} \cdot \frac{20}{\sqrt{74}} \cdot \frac{28}{\sqrt{74}} = \boxed{\textbf{(D)}\ \frac{140}{37}}</math>. | Let <math>O</math> be the center of the circle. Note that <math>EC + CA = EA = \sqrt{AD^2 + DE^2} = \sqrt{(2+2+3)^2 + 5^2} = \sqrt{74}</math>. However, by Power of a Point, <math>(EC)(EC + CA) = EO^2 - R^2 = (2+3)^2 + 5^2 - 2^2 = 25 + 25 - 4 = 46 \implies EC = \frac{46}{\sqrt{74}}</math>, so <math>AC = \sqrt{74} - \frac{46}{\sqrt{74}} = \frac{28}{\sqrt{74}}</math>. Now <math>BC = \sqrt{AB^2 - AC^2} = \sqrt{4^2 - \frac{28^2}{74}} = \sqrt{\frac{16 \cdot 74 - 28^2}{74}} = \sqrt{\frac{1184 - 784}{74}} = \frac{20}{\sqrt{74}}</math>. Since <math>\angle ACB = 90^{\circ}, [ABC] = \frac{1}{2} \cdot BC \cdot AC = \frac{1}{2} \cdot \frac{20}{\sqrt{74}} \cdot \frac{28}{\sqrt{74}} = \boxed{\textbf{(D)}\ \frac{140}{37}}</math>. | ||
+ | |||
+ | |||
+ | ==Solution 2: Similar triangles== | ||
+ | <math>AB</math> is the diameter of the circle, so <math>\angle ACB</math> is a right angle, and therefore by AAA similarity, <math>\triangle ACB \sim \triangle ADE</math>. | ||
+ | |||
+ | Because of this, <math>\frac{AC}{AD} = \frac{AB}{AE} \Longrightarrow \frac{AC}{2+2+3} = \frac{4}{\sqrt{7^2 + 5^2}}</math>, so <math>AC = \frac{28}{\sqrt{74}}</math>. | ||
+ | |||
+ | Likewise, <math>\frac{CB}{DE} = \frac{AB}{AE} \Longrightarrow \frac{CB}{5} = \frac{4}{\sqrt{74}}</math>, so <math>CB = \frac{20}{\sqrt{74}}</math>. | ||
+ | |||
+ | Thus the area of <math>\triangle ABC = \frac{1}{2} \cdot \frac{28}{\sqrt{74}} \cdot \frac{20}{\sqrt{74}} = \boxed{\textbf{(D)}\ \frac{140}{37}}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2017|ab=B|num-b=17|num-a=19}} | {{AMC12 box|year=2017|ab=B|num-b=17|num-a=19}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 02:17, 17 February 2017
Problem
The diameter of a circle of radius is extended to a point outside the circle so that . Point is chosen so that and line is perpendicular to line . Segment intersects the circle at a point between and . What is the area of ?
Solution 1
Let be the center of the circle. Note that . However, by Power of a Point, , so . Now . Since .
Solution 2: Similar triangles
is the diameter of the circle, so is a right angle, and therefore by AAA similarity, .
Because of this, , so .
Likewise, , so .
Thus the area of .
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.