Difference between revisions of "2017 AMC 12B Problems/Problem 18"

(Created page with "==Problem== The diameter <math>AB</math> of a circle of radius <math>2</math> is extended to a point <math>D</math> outside the circle so that <math>BD=3</math>. Point <math>E...")
 
m
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
 +
WORK IN PROGRESS
 +
 +
==See Also==
 +
{{AMC12 box|year=2017|ab=B|num-b=17|num-a=19}}
 +
{{MAA Notice}}

Revision as of 22:00, 16 February 2017

Problem

The diameter $AB$ of a circle of radius $2$ is extended to a point $D$ outside the circle so that $BD=3$. Point $E$ is chosen so that $ED=5$ and line $ED$ is perpendicular to line $AD$. Segment $AE$ intersects the circle at a point $C$ between $A$ and $E$. What is the area of $\triangle  ABC$?

$\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}$

Solution

WORK IN PROGRESS

See Also

2017 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png