Difference between revisions of "2017 AMC 10B Problems/Problem 19"

(Solution)
(Solution)
Line 5: Line 5:
 
==Solution==
 
==Solution==
 
Note that by symmetry, <math>\triangle A'B'C'</math> is also equilateral. Therefore, we only need to find one of the sides of <math>A'B'C'</math> to determine the area ratio. WLOG, let <math>AB = BC = CA = 1</math>. Therefore, <math>BB' = 3</math> and <math>BC' = 4</math>. Also, <math>\angle B'BC' = 120^{\circ}</math>, so by the Law of Cosines, <math>B'C' = \sqrt{37}</math>. Therefore, the answer is <math>(\sqrt{37})^2 : 1^2 = \boxed{\textbf{(E) } 37 : 1}</math>
 
Note that by symmetry, <math>\triangle A'B'C'</math> is also equilateral. Therefore, we only need to find one of the sides of <math>A'B'C'</math> to determine the area ratio. WLOG, let <math>AB = BC = CA = 1</math>. Therefore, <math>BB' = 3</math> and <math>BC' = 4</math>. Also, <math>\angle B'BC' = 120^{\circ}</math>, so by the Law of Cosines, <math>B'C' = \sqrt{37}</math>. Therefore, the answer is <math>(\sqrt{37})^2 : 1^2 = \boxed{\textbf{(E) } 37 : 1}</math>
 +
 +
==Solution 2 (no trig)==
 +
As mentioned in the first solution, <math>\triangle A'B'C'</math> is equilateral. WLOG, let <math>AB=2</math>. Let <math>D</math> be on the line passing through <math>AB</math> such that <math>A'D</math> is perpendicular to <math>AB</math>. Note that <math>\triangle A'DA</math> is a 30-60-90 with right angle at <math>D</math>. Since <math>AA'=6</math>, <math>AD=3</math> and <math>A'D=3\sqrt{3}</math>. So we know that <math>DB'=11</math>. Note that <math>\triangle A'DB'</math> is a right triangle with right angle at <math>D</math>. So by the Pythagorean theorem, we find <math>A'B'= \sqrt{(3\sqrt{3})^2 + 11^2} = 2\sqrt{37}.</math> Therefore, the answer is <math>(2\sqrt{37})^2 : 2^2 = \boxed{\textbf{(E) } 37 : 1}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2017|ab=B|num-b=18|num-a=20}}
 
{{AMC10 box|year=2017|ab=B|num-b=18|num-a=20}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:20, 16 February 2017

Problem

Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB'=3AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC'=3BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA'=3CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?

$\textbf{(A)}\ 9:1\qquad\textbf{(B)}\ 16:1\qquad\textbf{(C)}\ 25:1\qquad\textbf{(D)}\ 36:1\qquad\textbf{(E)}\ 37:1$

Solution

Note that by symmetry, $\triangle A'B'C'$ is also equilateral. Therefore, we only need to find one of the sides of $A'B'C'$ to determine the area ratio. WLOG, let $AB = BC = CA = 1$. Therefore, $BB' = 3$ and $BC' = 4$. Also, $\angle B'BC' = 120^{\circ}$, so by the Law of Cosines, $B'C' = \sqrt{37}$. Therefore, the answer is $(\sqrt{37})^2 : 1^2 = \boxed{\textbf{(E) } 37 : 1}$

Solution 2 (no trig)

As mentioned in the first solution, $\triangle A'B'C'$ is equilateral. WLOG, let $AB=2$. Let $D$ be on the line passing through $AB$ such that $A'D$ is perpendicular to $AB$. Note that $\triangle A'DA$ is a 30-60-90 with right angle at $D$. Since $AA'=6$, $AD=3$ and $A'D=3\sqrt{3}$. So we know that $DB'=11$. Note that $\triangle A'DB'$ is a right triangle with right angle at $D$. So by the Pythagorean theorem, we find $A'B'= \sqrt{(3\sqrt{3})^2 + 11^2} = 2\sqrt{37}.$ Therefore, the answer is $(2\sqrt{37})^2 : 2^2 = \boxed{\textbf{(E) } 37 : 1}$.

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png