Difference between revisions of "2017 AMC 10B Problems/Problem 18"
Ishankhare (talk | contribs) (Created page with "==Problem== Placeholder ==Solution== Placeholder ==See Also== {{AMC10 box|year=2017|ab=B|num-b=17|num-a=19}} {{MAA Notice}}") |
The turtle (talk | contribs) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | In the figure below, 3 of the 6 disks are to be painted blue, 2 are to be painted red, and 1 is to be painted green. Two paintings that can be obtained from one another by a rotation or a reflection of the entire figure are considered the same. How many different paintings are possible? | |
+ | |||
+ | <math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 25</math> | ||
==Solution== | ==Solution== |
Revision as of 12:23, 16 February 2017
Problem
In the figure below, 3 of the 6 disks are to be painted blue, 2 are to be painted red, and 1 is to be painted green. Two paintings that can be obtained from one another by a rotation or a reflection of the entire figure are considered the same. How many different paintings are possible?
Solution
Placeholder
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.