Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 14"
Line 1: | Line 1: | ||
14. Three points <math>A</math>, <math>B</math>, and <math>T</math> are fixed such that <math>T</math> lies on segment <math>AB</math>, closer to point <math>A</math>. Let <math>AT=m</math> and <math>BT=n</math> where <math>m</math> and <math>n</math> are positive integers. Construct circle <math>O</math> with a variable radius that is tangent to <math>AB</math> at <math>T</math>. Let <math>P</math> be the point such that circle <math>O</math> is the incircle of <math>\triangle APB</math>. Construct <math>M</math> as the midpoint of <math>AB</math>. Let <math>f(m,n)</math> denote the maximum value <math>\tan^{2}\angle AMP</math> for fixed <math>m</math> and <math>n</math> where <math>n>m</math>. If <math>f(m,49)</math> is an integer, find the sum of all possible values of <math>m</math>. | 14. Three points <math>A</math>, <math>B</math>, and <math>T</math> are fixed such that <math>T</math> lies on segment <math>AB</math>, closer to point <math>A</math>. Let <math>AT=m</math> and <math>BT=n</math> where <math>m</math> and <math>n</math> are positive integers. Construct circle <math>O</math> with a variable radius that is tangent to <math>AB</math> at <math>T</math>. Let <math>P</math> be the point such that circle <math>O</math> is the incircle of <math>\triangle APB</math>. Construct <math>M</math> as the midpoint of <math>AB</math>. Let <math>f(m,n)</math> denote the maximum value <math>\tan^{2}\angle AMP</math> for fixed <math>m</math> and <math>n</math> where <math>n>m</math>. If <math>f(m,49)</math> is an integer, find the sum of all possible values of <math>m</math>. | ||
+ | |||
+ | [[Mock AIME 1 2006-2007]] |
Revision as of 14:59, 24 July 2006
14. Three points , , and are fixed such that lies on segment , closer to point . Let and where and are positive integers. Construct circle with a variable radius that is tangent to at . Let be the point such that circle is the incircle of . Construct as the midpoint of . Let denote the maximum value for fixed and where . If is an integer, find the sum of all possible values of .