Difference between revisions of "2017 AMC 10B Problems/Problem 24"
m (→Solution) |
m (→Solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | WLOG, let the centroid of | + | WLOG, let the centroid of <math>\triangle ABC</math> be <math>I = (-1,-1)</math>. By symmetry, <math>A = (1,1)</math>, so <math>AI = BI = CI = 2\sqrt{2}</math>, so since <math>\triangle AIB</math> is isosceles and <math>\angle AIB = 120^{\circ}</math>, then by Law of Cosines, <math>AB = 2\sqrt{6}</math>. Therefore, the area of the triangle is <math>\frac{(2\sqrt{6})^2\sqrt{3}}4 = 6\sqrt{3}</math>, so the square of the area of the triangle is <math>\boxed{\textbf{(C) } 108}</math>. |
==See Also== | ==See Also== | ||
{{AMC10 box|year=2017|ab=B|num-b=23|num-a=25}} | {{AMC10 box|year=2017|ab=B|num-b=23|num-a=25}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 09:38, 16 February 2017
Problem 24
The vertices of an equilateral triangle lie on the hyperbola , and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?
Solution
WLOG, let the centroid of be . By symmetry, , so , so since is isosceles and , then by Law of Cosines, . Therefore, the area of the triangle is , so the square of the area of the triangle is .
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.