Difference between revisions of "2017 AMC 10B Problems/Problem 22"

(Created page with "The diameter <math>AB</math> of a circle of radius <math>2</math> is extended to a point <math>D</math> outside the circle so that <math>BD=3</math>. Point <math>E</math> is c...")
 
Line 1: Line 1:
The diameter <math>AB</math> of a circle of radius <math>2</math> is extended to a point <math>D</math> outside the circle so that <math>BD=3</math>. Point <math>E</math> is chosen so that <math>ED=5</math> and line <math>ED</math> is perpendicular to line <math>AD</math>. Segment <math>AE</math> intersects the circle at a point <math>C</math> between <math>A</math> and <math>E</math>. What is the area of <math>ABC</math>?
+
The diameter <math>AB</math> of a circle of radius <math>2</math> is extended to a point <math>D</math> outside the circle so that <math>BD=3</math>. Point <math>E</math> is chosen so that <math>ED=5</math> and line <math>ED</math> is perpendicular to line <math>AD</math>. Segment <math>AE</math> intersects the circle at a point <math>C</math> between <math>A</math> and <math>E</math>. What is the area of <math>\triangle
 +
ABC</math>?
  
 
<math>\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}</math>
 
<math>\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}</math>

Revision as of 09:22, 16 February 2017

The diameter $AB$ of a circle of radius $2$ is extended to a point $D$ outside the circle so that $BD=3$. Point $E$ is chosen so that $ED=5$ and line $ED$ is perpendicular to line $AD$. Segment $AE$ intersects the circle at a point $C$ between $A$ and $E$. What is the area of $\triangle  ABC$?

$\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}$