Difference between revisions of "2017 AMC 12A Problems/Problem 25"

(Created page with "==Problem== The vertices <math>V</math> of a centrally symmetric hexagon in the complex plane are given by <cmath>V=\left\{ \sqrt{2}i,-\sqrt{2}i, \frac{1}{\sqrt{8}}(1+i),\f...")
 
(Problem)
Line 6: Line 6:
  
 
<math>\textbf{(A) } \dfrac{5\cdot11}{3^{10}} \qquad \textbf{(B) } \dfrac{5^2\cdot11}{2\cdot3^{10}} \qquad \textbf{(C) } \dfrac{5\cdot11}{3^{9}} \qquad \textbf{(D) } \dfrac{5\cdot7\cdot11}{2\cdot3^{10}} \qquad \textbf{(E) } \dfrac{2^2\cdot5\cdot11}{3^{10}}</math>
 
<math>\textbf{(A) } \dfrac{5\cdot11}{3^{10}} \qquad \textbf{(B) } \dfrac{5^2\cdot11}{2\cdot3^{10}} \qquad \textbf{(C) } \dfrac{5\cdot11}{3^{9}} \qquad \textbf{(D) } \dfrac{5\cdot7\cdot11}{2\cdot3^{10}} \qquad \textbf{(E) } \dfrac{2^2\cdot5\cdot11}{3^{10}}</math>
 +
 +
 +
 +
==See Also==
 +
{{AMC12 box|year=2017|ab=A|num-b=24|num-a=??}}
 +
{{MAA Notice}}

Revision as of 17:00, 8 February 2017

Problem

The vertices $V$ of a centrally symmetric hexagon in the complex plane are given by \[V=\left\{   \sqrt{2}i,-\sqrt{2}i, \frac{1}{\sqrt{8}}(1+i),\frac{1}{\sqrt{8}}(-1+i),\frac{1}{\sqrt{8}}(1-i),\frac{1}{\sqrt{8}}(-1-i) \right\}.\] For each $j$, $1\leq j\leq 12$, an element $z_j$ is chosen from $V$ at random, independently of the other choices. Let $P={\prod}_{j=1}^{12}z_j$ be the product of the $12$ numbers selected. What is the probability that $P=-1$?

$\textbf{(A) } \dfrac{5\cdot11}{3^{10}} \qquad \textbf{(B) } \dfrac{5^2\cdot11}{2\cdot3^{10}} \qquad \textbf{(C) } \dfrac{5\cdot11}{3^{9}} \qquad \textbf{(D) } \dfrac{5\cdot7\cdot11}{2\cdot3^{10}} \qquad \textbf{(E) } \dfrac{2^2\cdot5\cdot11}{3^{10}}$


See Also

2017 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Problem ??
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png