Difference between revisions of "2017 AMC 10A Problems/Problem 15"

(Problem)
m
Line 7: Line 7:
 
Denote "winning" to mean "picking a greater number".
 
Denote "winning" to mean "picking a greater number".
 
There is a <math>\frac{1}{2}</math> chance that Laurent chooses a number in the interval <math>(2017, 4032]</math>. In this case, Chloé cannot possibly win, since the maximum number she can pick is <math>2017</math>. Otherwise, if Laurent picks a number in the interval <math>[0, 2017]</math>, with probability <math>\frac{1}{2}</math>, then the two people are symmetric, and each has a <math>\frac{1}{2}</math> chance of winning. Then, the total probability is <math>\frac{1}{2}*1 + \frac{1}{2}*\frac{1}{2} = \boxed{\frac{3}{4} (C)}</math>
 
There is a <math>\frac{1}{2}</math> chance that Laurent chooses a number in the interval <math>(2017, 4032]</math>. In this case, Chloé cannot possibly win, since the maximum number she can pick is <math>2017</math>. Otherwise, if Laurent picks a number in the interval <math>[0, 2017]</math>, with probability <math>\frac{1}{2}</math>, then the two people are symmetric, and each has a <math>\frac{1}{2}</math> chance of winning. Then, the total probability is <math>\frac{1}{2}*1 + \frac{1}{2}*\frac{1}{2} = \boxed{\frac{3}{4} (C)}</math>
 +
 +
==See Also==
 +
{{AMC10 box|year=2017|ab=A|num-b=14|num-a=16}}
 +
{{MAA Notice}}

Revision as of 16:40, 8 February 2017

Problem

Chloé chooses a real number uniformly at random from the interval $[0, 2017]$. Independently, Laurent cooses a real number uniformly at random from the interval $[0, 4034]$. What is the probability that Laurent's number is greater than Chloé's number?

$\mathrm{(A) \ }\frac{1}{2}\qquad \mathrm{(B) \ } \frac{2}{3}\qquad \mathrm{(C) \ } \frac{3}{4}\qquad \mathrm{(D) \ } \frac{5}{6}\qquad \mathrm{(E) \ }\frac{7}{8}$

Solution

Denote "winning" to mean "picking a greater number". There is a $\frac{1}{2}$ chance that Laurent chooses a number in the interval $(2017, 4032]$. In this case, Chloé cannot possibly win, since the maximum number she can pick is $2017$. Otherwise, if Laurent picks a number in the interval $[0, 2017]$, with probability $\frac{1}{2}$, then the two people are symmetric, and each has a $\frac{1}{2}$ chance of winning. Then, the total probability is $\frac{1}{2}*1 + \frac{1}{2}*\frac{1}{2} = \boxed{\frac{3}{4} (C)}$

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png