Difference between revisions of "2017 AMC 12A Problems/Problem 23"
m (→Solution: one last typo fix) |
(→Solution) |
||
Line 39: | Line 39: | ||
Hence <math>f(1)=91\cdot(-77)=\boxed{\textbf{(C)}\,-7007}</math>. | Hence <math>f(1)=91\cdot(-77)=\boxed{\textbf{(C)}\,-7007}</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC12 box|year=2017|ab=A|num-b=22|num-a=24}} | ||
+ | {{MAA Notice}} |
Revision as of 16:20, 8 February 2017
Problem
For certain real numbers , , and , the polynomial has three distinct roots, and each root of is also a root of the polynomial What is ?
Solution
Let and be the roots of . Let be the additional root of . Then from Vieta's formulas on the quadratic term of and the cubic term of , we obtain the following:
Thus .
Now applying Vieta's formulas on the constant term of , the linear term of , and the linear term of , we obtain:
Substituting for in the bottom equation and factoring the remainder of the expression, we obtain:
It follows that . But so
Now we can factor in terms of as
Then and
Hence .
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.