Difference between revisions of "2013 AMC 12B Problems/Problem 22"
Awesomeclaw (talk | contribs) (→Solution) |
m (→Solution) |
||
Line 10: | Line 10: | ||
<cmath>\frac{8}{\log n \log m}(\log x)^2 - \left(\frac{7}{\log n}+\frac{6}{\log m}\right)\log x - 2013 = 0</cmath> | <cmath>\frac{8}{\log n \log m}(\log x)^2 - \left(\frac{7}{\log n}+\frac{6}{\log m}\right)\log x - 2013 = 0</cmath> | ||
− | By Vieta's Theorem, the sum of the possible values of <math>\log x</math> is <math>\frac{\frac{7}{\log n}+\frac{6}{\log m}}{\frac{8}{\log n \log m}} = \frac{7\log m + 6 \log n}{8} = \log \sqrt[8]{m^7n^6}</math>. But the sum of the possible values of <math>\log x</math> is the logarithm of the product of the possible values of <math>x</math>. Thus the product of the possible values of <math>x</math> is equal to <math>\sqrt[8]{m^7n^6}</math>. | + | By Vieta's Theorem, the sum of the possible values of <math>\log x</math> is <math>\frac{\frac{7}{\log n}+\frac{6}{\log m}}{\frac{8}{\log n \log m}} = \frac{7\log m + 6 \log n}{8} = \log \sqrt[8]{m^7n^6}</math>. But the sum of the possible values of <math>\log x</math> is the logarithm of the product of the possible values of <math>x</math>. Thus the product of the possible values of <math>x</math> is equal to <math>10^{\sqrt[8]{m^7n^6}}</math>. |
It remains to minimize the integer value of <math>\sqrt[8]{m^7n^6}</math>. Since <math>m, n>1</math>, we can check that <math>m = 2^2</math> and <math>n = 2^3</math> work. Thus the answer is <math>4+8 = \boxed{\textbf{(A)}\ 12}</math>. | It remains to minimize the integer value of <math>\sqrt[8]{m^7n^6}</math>. Since <math>m, n>1</math>, we can check that <math>m = 2^2</math> and <math>n = 2^3</math> work. Thus the answer is <math>4+8 = \boxed{\textbf{(A)}\ 12}</math>. |
Revision as of 06:54, 30 January 2017
Problem
Let and be integers. Suppose that the product of the solutions for of the equation is the smallest possible integer. What is ?
Solution
Rearranging logs, the original equation becomes
By Vieta's Theorem, the sum of the possible values of is . But the sum of the possible values of is the logarithm of the product of the possible values of . Thus the product of the possible values of is equal to .
It remains to minimize the integer value of . Since , we can check that and work. Thus the answer is .
See also
2013 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.