Difference between revisions of "2008 AMC 12A Problems/Problem 24"
(→See also) |
(→Solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
+ | ===Solution 1=== | ||
<asy>unitsize(12mm); | <asy>unitsize(12mm); | ||
pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); | pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); | ||
Line 38: | Line 39: | ||
Thus, the maximum is at | Thus, the maximum is at | ||
<math>\frac{\sqrt{3}}{4\sqrt{2}-3} \Rightarrow \mathbf{(D)}</math>. | <math>\frac{\sqrt{3}}{4\sqrt{2}-3} \Rightarrow \mathbf{(D)}</math>. | ||
+ | |||
+ | ===Solution 2=== | ||
+ | We notice that <math>\tan(x)</math> is strictly increasing on the interval <math>[0, \frac{\pi}{2})</math> (if <math>\angle BAD\ge 90^\circ</math>, then it is impossible for <math>\angle C=60^\circ</math>), so we want to maximize <math>\angle BAD</math>. | ||
+ | |||
+ | Consider the circumcircle of <math>BAD</math> and let it meet <math>AC</math> again at <math>F</math>. Any point <math>P</math> between <math>A</math> and <math>F</math> on line <math>AC</math> is inside this circle, so it follows that <math>\angle BPD>\angle BAD</math>. Therefore to maximize <math>\angle BAD</math>, the circumcircle of <math>BAD</math> must be tangent to <math>AC</math> at <math>A</math>. By PoP we find that <math>CA^2=CD\cdot CB \Rightarrow AC = 2\sqrt{2}</math>. | ||
+ | |||
+ | Now our computations are straightforward: | ||
+ | <cmath>\tan\angle BAD = \frac{\sin \angle BAD}{\cos \angle BAD} = \frac{\frac{2\sin\angle ABD}{AD}}{\frac{AB^2+AD^2-BD^2}{2AB\cdot AD}}</cmath> | ||
+ | <cmath>=\frac{4\sin \angle ABD\cdot AB}{AB^2+AD^2-4} = \frac{4 AC \sin \angle ACB}{AB^2 + AD^2 - 4}</cmath> | ||
+ | <cmath>=\frac{4\sqrt{6}}{(4^2+(2\sqrt{2})^2-4\cdot 2\sqrt{2}) + (2^2+(2\sqrt{2})^2 - 2\cdot 2\sqrt{2}) - 4} = \frac{4\sqrt{6}}{32-12\sqrt{2}}</cmath> | ||
+ | <cmath>=\boxed{\frac{\sqrt{3}}{4\sqrt{2}-3}}</cmath> | ||
==See also== | ==See also== |
Revision as of 14:16, 27 January 2017
Problem
Triangle has and . Point is the midpoint of . What is the largest possible value of ?
Solution
Solution 1
Let . Then , and since and , we have
With calculus, taking the derivative and setting equal to zero will give the maximum value of . Otherwise, we can apply AM-GM:
Thus, the maximum is at .
Solution 2
We notice that is strictly increasing on the interval (if , then it is impossible for ), so we want to maximize .
Consider the circumcircle of and let it meet again at . Any point between and on line is inside this circle, so it follows that . Therefore to maximize , the circumcircle of must be tangent to at . By PoP we find that .
Now our computations are straightforward:
See also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.