Difference between revisions of "2000 AMC 12 Problems/Problem 15"

(Solution)
m
Line 6: Line 6:
 
<math>\text {(A)}\ -1/3 \qquad \text {(B)}\ -1/9 \qquad \text {(C)}\ 0 \qquad \text {(D)}\ 5/9 \qquad \text {(E)}\ 5/3</math>
 
<math>\text {(A)}\ -1/3 \qquad \text {(B)}\ -1/9 \qquad \text {(C)}\ 0 \qquad \text {(D)}\ 5/9 \qquad \text {(E)}\ 5/3</math>
  
== Solution ==
+
==Solution 1==
 
Let <math>y = \frac{x}{3}</math>; then <math>f(y) = (3y)^2 + 3y + 1 = 9y^2 + 3y+1</math>. Thus <math>f(3z)-7=81z^2+9z-6=3(9z-2)(3z+1)=0</math>, and <math>z = -\frac{1}{3}, \frac{2}{9}</math>. These sum up to <math>\boxed{-\frac{1}{9}\ \mathrm{(B)}}</math>. (We can also use [[Vieta's formulas]] to find the sum more quickly.)
 
Let <math>y = \frac{x}{3}</math>; then <math>f(y) = (3y)^2 + 3y + 1 = 9y^2 + 3y+1</math>. Thus <math>f(3z)-7=81z^2+9z-6=3(9z-2)(3z+1)=0</math>, and <math>z = -\frac{1}{3}, \frac{2}{9}</math>. These sum up to <math>\boxed{-\frac{1}{9}\ \mathrm{(B)}}</math>. (We can also use [[Vieta's formulas]] to find the sum more quickly.)
  
'''Alternative solution:''' Set <math>f(\frac{x}{3}) = x^2+x+1=7</math> to get <math>x^2+x-6=0.</math> From either finding the roots or using Vieta's formulas, we find the sum of these roots to be <math>-1.</math> Each root of this equation is <math>9</math> times greater than a corresponding root of <math>f(3z) = 7</math> (because <math>\frac{x}{3} = 3z</math> gives <math>x = 9z</math>), thus the sum of the roots in the equation <math>f(3z)=7</math> is <math>-\frac{1}{9}.</math>
+
==Solution 2==
 
+
Set <math>f(\frac{x}{3}) = x^2+x+1=7</math> to get <math>x^2+x-6=0.</math> From either finding the roots or using Vieta's formulas, we find the sum of these roots to be <math>-1.</math> Each root of this equation is <math>9</math> times greater than a corresponding root of <math>f(3z) = 7</math> (because <math>\frac{x}{3} = 3z</math> gives <math>x = 9z</math>), thus the sum of the roots in the equation <math>f(3z)=7</math> is <math>-\frac{1}{9}.</math>
'''Alternate Solution 2:'''
 
  
 +
=Solution 3==
 
Since we have <math>f(x/3)</math>, <math>f(3z)</math> occurs at <math>x=9z.</math> Thus, <math>f(9z/3) = f(3z) = (9z)^2 + 9z + 1</math>. We set this equal to 7:
 
Since we have <math>f(x/3)</math>, <math>f(3z)</math> occurs at <math>x=9z.</math> Thus, <math>f(9z/3) = f(3z) = (9z)^2 + 9z + 1</math>. We set this equal to 7:
  

Revision as of 16:05, 20 January 2017

The following problem is from both the 2000 AMC 12 #15 and 2000 AMC 10 #24, so both problems redirect to this page.

Problem

Let $f$ be a function for which $f(x/3) = x^2 + x + 1$. Find the sum of all values of $z$ for which $f(3z) = 7$.

$\text {(A)}\ -1/3 \qquad \text {(B)}\ -1/9 \qquad \text {(C)}\ 0 \qquad \text {(D)}\ 5/9 \qquad \text {(E)}\ 5/3$

Solution 1

Let $y = \frac{x}{3}$; then $f(y) = (3y)^2 + 3y + 1 = 9y^2 + 3y+1$. Thus $f(3z)-7=81z^2+9z-6=3(9z-2)(3z+1)=0$, and $z = -\frac{1}{3}, \frac{2}{9}$. These sum up to $\boxed{-\frac{1}{9}\ \mathrm{(B)}}$. (We can also use Vieta's formulas to find the sum more quickly.)

Solution 2

Set $f(\frac{x}{3}) = x^2+x+1=7$ to get $x^2+x-6=0.$ From either finding the roots or using Vieta's formulas, we find the sum of these roots to be $-1.$ Each root of this equation is $9$ times greater than a corresponding root of $f(3z) = 7$ (because $\frac{x}{3} = 3z$ gives $x = 9z$), thus the sum of the roots in the equation $f(3z)=7$ is $-\frac{1}{9}.$

Solution 3=

Since we have $f(x/3)$, $f(3z)$ occurs at $x=9z.$ Thus, $f(9z/3) = f(3z) = (9z)^2 + 9z + 1$. We set this equal to 7:

$81z^2 + 9z +1 = 7 \Longrightarrow 81z^2 + 9z - 6 = 0$. For any quadratic $ax^2 + bx +c = 0$, the sum of the roots is $-\frac{b}{a}$. Thus, the sum of the roots of this equation is $-\frac{9}{81} = \boxed{-\frac{1}{9}} \Longrightarrow \boxed{\text{(B)}}$

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png