Difference between revisions of "2014 AIME II Problems/Problem 11"
(→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = \frac{CD}{2}</math>. We can then use coordinates. Let <math>O</math> be the foot of altitude <math>RO</math> and set <math>O</math> as the origin. Now we notice special right triangles! In particular, <math>DO = \frac{1}{2}</math> and <math>EO = RO = \frac{\sqrt{3}}{2}</math>, so <math>D(\frac{1}{2}, 0)</math>, <math>E(-\frac{\sqrt{3}}{2}, 0)</math>, and <math>R(0, \frac{\sqrt{3}}{2}).</math> <math>M =</math> midpoint<math>(D, R) = (\frac{1}{4}, \frac{\sqrt{3}}{4})</math> and the slope of <math>ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + 2\sqrt{3}}</math>, so the slope of <math>RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.</math> Instead of finding the equation of the line, we use the definition of slope: for every <math>CO = x</math> to the left, we go <math>\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}</math> up. Thus, <math>x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.</math> <math>DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}</math>, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>. | Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = \frac{CD}{2}</math>. We can then use coordinates. Let <math>O</math> be the foot of altitude <math>RO</math> and set <math>O</math> as the origin. Now we notice special right triangles! In particular, <math>DO = \frac{1}{2}</math> and <math>EO = RO = \frac{\sqrt{3}}{2}</math>, so <math>D(\frac{1}{2}, 0)</math>, <math>E(-\frac{\sqrt{3}}{2}, 0)</math>, and <math>R(0, \frac{\sqrt{3}}{2}).</math> <math>M =</math> midpoint<math>(D, R) = (\frac{1}{4}, \frac{\sqrt{3}}{4})</math> and the slope of <math>ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + 2\sqrt{3}}</math>, so the slope of <math>RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.</math> Instead of finding the equation of the line, we use the definition of slope: for every <math>CO = x</math> to the left, we go <math>\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}</math> up. Thus, <math>x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.</math> <math>DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}</math>, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>. | ||
+ | |||
+ | <asy> | ||
+ | unitsize(8cm); | ||
+ | pair a, o, d, r, e, m, cm, c,p; | ||
+ | o =(0,0); | ||
+ | d = (0.5, 0); | ||
+ | r = (0,sqrt(3)/2); | ||
+ | e = (-sqrt(3)/2,0); | ||
+ | |||
+ | m = midpoint(d--r); | ||
+ | draw(e--m); | ||
+ | cm = foot(r, e, m); | ||
+ | draw(L(r, cm,1, 1)); | ||
+ | c = IP(L(r, cm, 1, 1), e--d); | ||
+ | clip(r--d--e--cycle); | ||
+ | draw(r--d--e--cycle); | ||
+ | draw(rightanglemark(e, cm, c, 1.5)); | ||
+ | a = -(4sqrt(3)+9)/11+0.5; | ||
+ | dot(a); | ||
+ | draw(a--r, dashed); | ||
+ | draw(a--c, dashed); | ||
+ | pair[] PPAP = {a, o, d, r, e, m, c}; | ||
+ | for(int i = 0; i<7; ++i) { | ||
+ | dot(PPAP[i]); | ||
+ | } | ||
+ | label("$A$", a, W); | ||
+ | label("$E$", e, SW); | ||
+ | label("$C$", c, S); | ||
+ | label("$O$", o, S); | ||
+ | label("$D$", d, SE); | ||
+ | label("$M$", m, NE); | ||
+ | label("$R$", r, N); | ||
+ | p = foot(a, r, c); | ||
+ | label("$P$", p, NE); | ||
+ | draw(p--m, dashed); | ||
+ | draw(a--p, dashed); | ||
+ | dot(p); | ||
+ | </asy> | ||
== See also == | == See also == |
Revision as of 13:33, 31 December 2016
Problem 11
In , and . . Let be the midpoint of segment . Point lies on side such that . Extend segment through to point such that . Then , where and are relatively prime positive integers, and is a positive integer. Find .
Solution
Let be the foot of the perpendicular from to , so . Since triangle is isosceles, is the midpoint of , and . Thus, is a parallelogram and . We can then use coordinates. Let be the foot of altitude and set as the origin. Now we notice special right triangles! In particular, and , so , , and midpoint and the slope of , so the slope of Instead of finding the equation of the line, we use the definition of slope: for every to the left, we go up. Thus, , and , so the answer is .
See also
2014 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.