Difference between revisions of "2010 AMC 12A Problems/Problem 17"

(Solution)
m (Solution 2)
Line 23: Line 23:
 
Step 2: <math>\triangle{ABC}</math>~<math>\triangle{CDE}</math>~<math>\triangle{EFA}</math> via SAS congruency. Using the formula <math>[ABC]=\frac{ab \sin C}{2}= \frac{r \sqrt{3}}{2}</math> and because of the congruency, the area condition, and the fact <math>\triangle{ACE}</math> is equilateral, <math>AC=\sqrt{7r}</math>.
 
Step 2: <math>\triangle{ABC}</math>~<math>\triangle{CDE}</math>~<math>\triangle{EFA}</math> via SAS congruency. Using the formula <math>[ABC]=\frac{ab \sin C}{2}= \frac{r \sqrt{3}}{2}</math> and because of the congruency, the area condition, and the fact <math>\triangle{ACE}</math> is equilateral, <math>AC=\sqrt{7r}</math>.
  
Step 3: <math>\sqrt{7r}=\sqrt{r^2+r+1} \implies r^2-6r+1=</math> and by [[Vieta's Formulas]] we get <math>\boxed{\textbf{E}}</math>.
+
Step 3: <math>\sqrt{7r}=\sqrt{r^2+r+1} \implies r^2-6r+1=0</math> and by [[Vieta's Formulas]] we get <math>\boxed{\textbf{E}}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 14:18, 28 December 2016

Problem

Equiangular hexagon $ABCDEF$ has side lengths $AB=CD=EF=1$ and $BC=DE=FA=r$. The area of $\triangle ACE$ is $70\%$ of the area of the hexagon. What is the sum of all possible values of $r$?

$\textbf{(A)}\ \frac{4\sqrt{3}}{3} \qquad \textbf{(B)} \frac{10}{3} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac{17}{4} \qquad \textbf{(E)}\ 6$

Solution 1

It is clear that $\triangle ACE$ is an equilateral triangle. From the Law of Cosines, we get that $AC^2 = r^2+1^2-2r\cos{\frac{2\pi}{3}} = r^2+r+1$. Therefore, the area of $\triangle ACE$ is $\frac{\sqrt{3}}{4}(r^2+r+1)$.

If we extend $BC$, $DE$ and $FA$ so that $FA$ and $BC$ meet at $X$, $BC$ and $DE$ meet at $Y$, and $DE$ and $FA$ meet at $Z$, we find that hexagon $ABCDEF$ is formed by taking equilateral triangle $XYZ$ of side length $r+2$ and removing three equilateral triangles, $ABX$, $CDY$ and $EFZ$, of side length $1$. The area of $ABCDEF$ is therefore

$\frac{\sqrt{3}}{4}(r+2)^2-\frac{3\sqrt{3}}{4} = \frac{\sqrt{3}}{4}(r^2+4r+1)$.


Based on the initial conditions,

\[\frac{\sqrt{3}}{4}(r^2+r+1) = \frac{7}{10}\left(\frac{\sqrt{3}}{4}\right)(r^2+4r+1)\]

Simplifying this gives us $r^2-6r+1 = 0$. By Vieta's Formulas we know that the sum of the possible value of $r$ is $\boxed{\textbf{(E)}\ 6}$.

Solution 2

Step 1: Use Law of Cosines in the same manner as the pervious solution to get $AC=\sqrt{r^2+r+1}$.

Step 2: $\triangle{ABC}$~$\triangle{CDE}$~$\triangle{EFA}$ via SAS congruency. Using the formula $[ABC]=\frac{ab \sin C}{2}= \frac{r \sqrt{3}}{2}$ and because of the congruency, the area condition, and the fact $\triangle{ACE}$ is equilateral, $AC=\sqrt{7r}$.

Step 3: $\sqrt{7r}=\sqrt{r^2+r+1} \implies r^2-6r+1=0$ and by Vieta's Formulas we get $\boxed{\textbf{E}}$.

See also

2010 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png