Difference between revisions of "1975 AHSME Problems/Problem 1"

m (Solution)
m (Solution)
Line 1: Line 1:
 +
The value of <math>\frac {1}{2 - \frac {1}{2 - \frac {1}{2 - \frac12}}}</math> is
 +
 +
<math>\textbf{(A)}\ 3/4 \qquad
 +
\textbf{(B)}\ 4/5 \qquad
 +
\textbf{(C)}\ 5/6 \qquad
 +
\textbf{(D)}\ 6/7 \qquad
 +
\textbf{(E)}\ 6/5  </math> 
 +
 +
 
==Solution==
 
==Solution==
 
Solution by e_power_pi_times_i
 
Solution by e_power_pi_times_i

Revision as of 11:52, 15 December 2016

The value of $\frac {1}{2 - \frac {1}{2 - \frac {1}{2 - \frac12}}}$ is

$\textbf{(A)}\ 3/4 \qquad  \textbf{(B)}\ 4/5 \qquad  \textbf{(C)}\ 5/6 \qquad  \textbf{(D)}\ 6/7 \qquad  \textbf{(E)}\ 6/5$


Solution

Solution by e_power_pi_times_i


Calculating, we find that $\frac {1}{2 - \frac {1}{2 - \frac {1}{2 - \frac12}}} = \frac {1}{2 - \frac {1}{2 - \frac {2}{3}}} = \frac {1}{2 - \frac {3}{4}} = \frac {1}{\frac {5}{4}} = \boxed{\textbf{(B) } \dfrac{4}{5}}$.