Difference between revisions of "2010 AMC 12B Problems/Problem 14"
Wiggle Wam (talk | contribs) (→Solution) |
|||
Line 8: | Line 8: | ||
Notice that <math>2010=670+670+670</math>. In order to express <math>2010</math> as a sum of <math>5</math> numbers, we must split up some of these numbers. There are two ways to do this (while keeping the sum of two numbers as close as possible): <math>2010=670+1+670+1+668</math> or <math>2010=670+1+669+1+669</math>. We see that in both cases, the value of <math>M</math> is <math>671</math>, so the answer is <math>671 \Rightarrow \boxed{B}</math>. | Notice that <math>2010=670+670+670</math>. In order to express <math>2010</math> as a sum of <math>5</math> numbers, we must split up some of these numbers. There are two ways to do this (while keeping the sum of two numbers as close as possible): <math>2010=670+1+670+1+668</math> or <math>2010=670+1+669+1+669</math>. We see that in both cases, the value of <math>M</math> is <math>671</math>, so the answer is <math>671 \Rightarrow \boxed{B}</math>. | ||
+ | |||
+ | == Solution 2 == | ||
+ | First, note that, simply by pigeonhole, at least one of a, b, c, d, e is greater than or equal to <math>\frac{2010}{5}=402,</math> so none of C, D, or E can be the answer. Thus, the answer is A or B. We will show that A is unattainable, leaving us with B as the only possible answer. | ||
+ | |||
+ | Assume WLOG that <math>d+e</math> is the largest sum. So <math>d+e=670,</math> meaning <math>a+b+c=2010-670=1340.</math> Because we let <math>d+e=M,</math> we must have <math>a+b \leq M=670</math> and <math>b+c \leq M=670.</math> Adding these inequalities gives <math>a+2b+c \leq 1340.</math> But we just showed that <math>a+b+c=1340,</math> which means that <math>b=0,</math> a contradiction because we are told that all the variables are positive. | ||
+ | |||
+ | Therefore, the answer is <math>\boxed{B}.</math> | ||
== See also == | == See also == | ||
{{AMC12 box|year=2010|num-b=13|num-a=15|ab=B}} | {{AMC12 box|year=2010|num-b=13|num-a=15|ab=B}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 14:17, 1 December 2016
Contents
Problem 14
Let , , , , and be positive integers with and let be the largest of the sum , , and . What is the smallest possible value of ?
Solution
We want to try make , , , and as close as possible so that , the maximum of these, if smallest.
Notice that . In order to express as a sum of numbers, we must split up some of these numbers. There are two ways to do this (while keeping the sum of two numbers as close as possible): or . We see that in both cases, the value of is , so the answer is .
Solution 2
First, note that, simply by pigeonhole, at least one of a, b, c, d, e is greater than or equal to so none of C, D, or E can be the answer. Thus, the answer is A or B. We will show that A is unattainable, leaving us with B as the only possible answer.
Assume WLOG that is the largest sum. So meaning Because we let we must have and Adding these inequalities gives But we just showed that which means that a contradiction because we are told that all the variables are positive.
Therefore, the answer is
See also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.