Difference between revisions of "2016 AMC 8 Problems/Problem 13"
(→Solution) |
m (→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
− | The product can only be <math>0</math> if one of the numbers is 0. Once we chose <math>0</math>, there are <math>5</math> ways we can chose the second number, or <math>6-1</math>. There are <math> | + | The product can only be <math>0</math> if one of the numbers is 0. Once we chose <math>0</math>, there are <math>5</math> ways we can chose the second number, or <math>6-1</math>. There are <math>\dbinom{6}{2}</math> ways we can chose <math>2</math> numbers randomly, and that is <math>15</math>. So, <math>\frac{5}{15}=\frac{1}{3}=\textbf{(D)}</math> |
{{AMC8 box|year=2016|num-b=12|num-a=14}} | {{AMC8 box|year=2016|num-b=12|num-a=14}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 11:40, 23 November 2016
Two different numbers are randomly selected from the set and multiplied together. What is the probability that the product is ?
Solution
The product can only be if one of the numbers is 0. Once we chose , there are ways we can chose the second number, or . There are ways we can chose numbers randomly, and that is . So,
2016 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.