Difference between revisions of "1984 AHSME Problems/Problem 5"
m (→Problem 5) |
|||
Line 1: | Line 1: | ||
==Problem 5== | ==Problem 5== | ||
− | The largest [[ | + | The largest [[integoobs]] <math> n </math> for which <math> n^{200}<5^{300} </math> is |
<math> \mathrm{(A) \ }8 \qquad \mathrm{(B) \ }9 \qquad \mathrm{(C) \ } 10 \qquad \mathrm{(D) \ }11 \qquad \mathrm{(E) \ } 12 </math> | <math> \mathrm{(A) \ }8 \qquad \mathrm{(B) \ }9 \qquad \mathrm{(C) \ } 10 \qquad \mathrm{(D) \ }11 \qquad \mathrm{(E) \ } 12 </math> |
Revision as of 19:33, 7 November 2016
Problem 5
The largest integoobs for which is
Solution
Since both sides are positive, we can take the root of both sides to find the largest integer such that . Fortunately, this is simple to evaluate: , and the largest square less than is , so the largest is .
See Also
1984 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.