Difference between revisions of "1953 AHSME Problems/Problem 7"

(Created page with "== Problem == The fraction <math>\frac{\sqrt{a^2+x^2}-\frac{x^2-a^2}{\sqrt{a^2+x^2}}}{a^2+x^2}</math> reduces to: <math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ \frac{2a^2}{a^2...")
 
(Solution)
Line 11: Line 11:
 
== Solution ==
 
== Solution ==
  
Multiplying the numerator and denominator by <math>\sqrt{a^2+x^2}</math> results in <cmath>\frac{a^2+x^2-x^2+a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}=\frac{2a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}.</cmath> Since <math>\sqrt{a^2+x^2}=(a^2+x^2)^{\frac{1}{2}}</math>, if we call <math>a^2+x^2=p</math>, the denominator is really just <math>p^1\cdot{p^{\frac{1}{2}}}=p^{\frac{3}{2}}=(a^2+x^2)^{\frac{3}{2}}</math>. So, the fraction is just <math>\boxed{\textbf{(D) } \frac{2a^2}{(a^2+x^2)^{\frac{3}{2}}}}</math>.
+
Multiplying the numerator and denominator by <math>\sqrt{a^2+x^2}</math> results in <cmath>\frac{a^2+x^2-x^2+a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}=\frac{2a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}.</cmath> Since <math>\sqrt{a^2+x^2}=(a^2+x^2)^{\frac{1}{2}}</math>, if we call <math>a^2+x^2=p</math>, the denominator is really just <math>p^1\cdot{p^{\frac{1}{2}}}=p^{\frac{3}{2}}=(a^2+x^2)^ fraction is just </math>\boxed{\textbf{(D) } \frac{2a^2}{(a^2+x^2)^{\frac{3}{2}}}}$.

Revision as of 13:11, 29 October 2016

Problem

The fraction $\frac{\sqrt{a^2+x^2}-\frac{x^2-a^2}{\sqrt{a^2+x^2}}}{a^2+x^2}$ reduces to:

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ \frac{2a^2}{a^2+x^2} \qquad \textbf{(C)}\ \frac{2x^2}{(a^2+x^2)^{\frac{3}{2}}}\qquad \textbf{(D)}\ \frac{2a^2}{(a^2+x^2)^{\frac{3}{2}}}\qquad \textbf{(E)}\ \frac{2x^2}{a^2+x^2}$

Solution

Multiplying the numerator and denominator by $\sqrt{a^2+x^2}$ results in \[\frac{a^2+x^2-x^2+a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}=\frac{2a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}.\] Since $\sqrt{a^2+x^2}=(a^2+x^2)^{\frac{1}{2}}$, if we call $a^2+x^2=p$, the denominator is really just $p^1\cdot{p^{\frac{1}{2}}}=p^{\frac{3}{2}}=(a^2+x^2)^ fraction is just$\boxed{\textbf{(D) } \frac{2a^2}{(a^2+x^2)^{\frac{3}{2}}}}$.