Difference between revisions of "2004 AMC 10A Problems/Problem 21"

(Problem)
(Problem)
Line 2: Line 2:
 
Two distinct lines pass through the center of three concentric circles of radii 3, 2, and 1. The area of the shaded region in the diagram is <math>\frac{8}{13}</math> of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: <math>\pi</math> radians is <math>180</math> degrees.)
 
Two distinct lines pass through the center of three concentric circles of radii 3, 2, and 1. The area of the shaded region in the diagram is <math>\frac{8}{13}</math> of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: <math>\pi</math> radians is <math>180</math> degrees.)
  
<center>[img]http://www168.lunapic.com/do-not-link-here-use-hosting-instead/146950963617738?5661647711[/img]</center>
+
<center><math>[img]http://www168.lunapic.com/do-not-link-here-use-hosting-instead/146950963617738?5661647711[/img]</math></center>
  
 
<math> \mathrm{(A) \ } \frac{\pi}{8} \qquad \mathrm{(B) \ } \frac{\pi}{7} \qquad \mathrm{(C) \ } \frac{\pi}{6} \qquad \mathrm{(D) \ } \frac{\pi}{5} \qquad \mathrm{(E) \ } \frac{\pi}{4} </math>
 
<math> \mathrm{(A) \ } \frac{\pi}{8} \qquad \mathrm{(B) \ } \frac{\pi}{7} \qquad \mathrm{(C) \ } \frac{\pi}{6} \qquad \mathrm{(D) \ } \frac{\pi}{5} \qquad \mathrm{(E) \ } \frac{\pi}{4} </math>

Revision as of 17:48, 31 July 2016

Problem

Two distinct lines pass through the center of three concentric circles of radii 3, 2, and 1. The area of the shaded region in the diagram is $\frac{8}{13}$ of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: $\pi$ radians is $180$ degrees.)

$[img]http://www168.lunapic.com/do-not-link-here-use-hosting-instead/146950963617738?5661647711[/img]$

$\mathrm{(A) \ } \frac{\pi}{8} \qquad \mathrm{(B) \ } \frac{\pi}{7} \qquad \mathrm{(C) \ } \frac{\pi}{6} \qquad \mathrm{(D) \ } \frac{\pi}{5} \qquad \mathrm{(E) \ } \frac{\pi}{4}$

Solution

Let the area of the shaded region be $S$, the area of the unshaded region be $U$, and the acute angle that is formed by the two lines be $\theta$. We can set up two equations between $S$ and $U$:

$S+U=9\pi$

$S=\dfrac{8}{13}U$

Thus $\dfrac{21}{13}U=9\pi$, and $U=\dfrac{39\pi}{7}$, and thus $S=\dfrac{8}{13}\cdot \dfrac{39\pi}{7}=\dfrac{24\pi}{7}$.

Now we can make a formula for the area of the shaded region in terms of $\theta$:

$\dfrac{2\theta}{2\pi} \cdot \pi +\dfrac{2(\pi-\theta)}{2\pi} \cdot (4\pi-\pi)+\dfrac{2\theta}{2\pi}(9\pi-4\pi)=\theta +3\pi-3\theta+5\theta=3\theta+3\pi=\dfrac{24\pi}{7}$

Thus $3\theta=\dfrac{3\pi}{7}\Rightarrow \theta=\dfrac{\pi}{7}\Rightarrow\boxed{\mathrm{(B)}\ \frac{\pi}{7}}$

See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png