Difference between revisions of "1978 AHSME Problems/Problem 20"

(Problem 20)
(Solution)
Line 8: Line 8:
 
\textbf{(E) }-8    </math>
 
\textbf{(E) }-8    </math>
  
===Solution===
+
==Solution==
 +
 
 +
Take the first two expressions (you can actually take any two expressions):  <math>\frac{a+b-c}{c}=\frac{a-b+c}{b}</math>.
 +
 
 +
<math>\frac{a+b}{c}=\frac{a+c}{b}</math>
 +
 
 +
<math>ab+b^2=ac+c^2</math>
 +
 
 +
<math>a(b-c)+b^2-c^2=0</math>
 +
 
 +
<math>(a+b+c)(b-c)=0</math>
 +
 
 +
<math>\Rightarrow a+b+c=0</math> OR <math>b=c</math>
 +
 
 +
The first solution gives us <math>x=\frac{(-c)(-a)(-b)}{abc}=-1</math>.
 +
 
 +
The second solution gives us <math>a=b=c</math>, and <math>x=\frac{8a^3}{a^3}=8</math>, which is not negative, so this solution doesn't work.
 +
 
 +
Therefore, <math>x=1\Rightarrow\boxed{A}</math>.

Revision as of 11:00, 3 July 2016

If $a,b,c$ are non-zero real numbers such that $\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}$, and $x=\frac{(a+b)(b+c)(c+a)}{abc}$, and $x<0$, then $x$ equals

$\textbf{(A) }-1\qquad \textbf{(B) }-2\qquad \textbf{(C) }-4\qquad \textbf{(D) }-6\qquad  \textbf{(E) }-8$

Solution

Take the first two expressions (you can actually take any two expressions): $\frac{a+b-c}{c}=\frac{a-b+c}{b}$.

$\frac{a+b}{c}=\frac{a+c}{b}$

$ab+b^2=ac+c^2$

$a(b-c)+b^2-c^2=0$

$(a+b+c)(b-c)=0$

$\Rightarrow a+b+c=0$ OR $b=c$

The first solution gives us $x=\frac{(-c)(-a)(-b)}{abc}=-1$.

The second solution gives us $a=b=c$, and $x=\frac{8a^3}{a^3}=8$, which is not negative, so this solution doesn't work.

Therefore, $x=1\Rightarrow\boxed{A}$.