Difference between revisions of "1998 AJHSME Problems/Problem 19"

(Problem)
Line 4: Line 4:
  
 
<math>\text{(A)}\ \dfrac{4}{9} \qquad \text{(B)}\ \dfrac{5}{9} \qquad \text{(C)}\ \dfrac{1}{2} \qquad \text{(D)}\ \dfrac{1}{3} \qquad \text{(E)}\ \dfrac{2}{3}</math>
 
<math>\text{(A)}\ \dfrac{4}{9} \qquad \text{(B)}\ \dfrac{5}{9} \qquad \text{(C)}\ \dfrac{1}{2} \qquad \text{(D)}\ \dfrac{1}{3} \qquad \text{(E)}\ \dfrac{2}{3}</math>
 +
      hi
  
 
==Solution==
 
==Solution==

Revision as of 15:41, 21 June 2016

Problem

Tamika selects two different numbers at random from the set $\{ 8,9,10 \}$ and adds them. Carlos takes two different numbers at random from the set $\{3, 5, 6\}$ and multiplies them. What is the probability that Tamika's result is greater than Carlos' result?

$\text{(A)}\ \dfrac{4}{9} \qquad \text{(B)}\ \dfrac{5}{9} \qquad \text{(C)}\ \dfrac{1}{2} \qquad \text{(D)}\ \dfrac{1}{3} \qquad \text{(E)}\ \dfrac{2}{3}$

     hi

Solution

The different possible (and equally likely) values Tamika gets are:

$8+9=17$

$8+10=18$

$9+10=19$

The different possible (and equally likely) values Carlos gets are:

$3\times5=15$

$3\times6=18$

$5\times6=30$

The probability that if Tamika had the sum $17$ her sum would be greater than Carlos's set is $\frac{1}{3}$, because $17$ is only greater than $15$

The probability that if Tamika had the sum $18$ her sum would be greater than Carlos's set is $\frac{1}{3}$, because $18$ is only greater than $15$

The probability that if Tamika had the sum $19$ her sum would be greater than Carlos's set is $\frac{2}{3}$, because $19$ is greater than both $15$ and $18$

Each sum has a $\frac{1}{3}$ possibility of being chosen, so we have

$\frac{1}{3}\left(\frac{1}{3}+\frac{1}{3}+\frac{2}{3}\right)=\frac{1}{3}\left(\frac{4}{3}\right)=\frac{4}{9}=\boxed{A}$

See also

1998 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png