Difference between revisions of "2006 AMC 10B Problems/Problem 16"
(Added problem and solution) |
m (proofreading) |
||
Line 11: | Line 11: | ||
<math> 16 \cdot 365 + 4 \cdot 1 = 5844 </math> | <math> 16 \cdot 365 + 4 \cdot 1 = 5844 </math> | ||
− | Since the days of the week repeat every <math>7</math> days and <math> 5844 \equiv -1 \bmod{7}</math>, the day of the week Leap Day 2020 occurs is the day of the week the day before Leap Day 2004 occurs which is <math>Saturday \Rightarrow E </math> | + | Since the days of the week repeat every <math>7</math> days and <math> 5844 \equiv -1 \bmod{7}</math>, the day of the week Leap Day 2020 occurs is the day of the week the day before Leap Day 2004 occurs, which is <math>Saturday \Rightarrow E </math>. |
== See Also == | == See Also == | ||
*[[2006 AMC 10B Problems]] | *[[2006 AMC 10B Problems]] |
Revision as of 12:22, 18 July 2006
Problem
Leap Day, February 29, 2004, occured on a Sunday. On what day of the week will Leap Day, February 29, 2020, occur?
Solution
There are days in a year, plus extra day if there is a Leap Day, which occurs on years that are multiples of 4 (with a few exceptions that don't affect this problem).
Therefore, the number of days between Leap Day 2004 and Leap Day 2020 is:
Since the days of the week repeat every days and , the day of the week Leap Day 2020 occurs is the day of the week the day before Leap Day 2004 occurs, which is .