Difference between revisions of "1983 AHSME Problems/Problem 20"

(Solution)
(Solution)
Line 16: Line 16:
  
 
Thus, the answer is <math>(\text{C}) \ \frac{p}{q^2}</math>
 
Thus, the answer is <math>(\text{C}) \ \frac{p}{q^2}</math>
 +
==See Also==
 +
{{AHSME box|year=1983|num-b=19|num-a=21}}
 +
 +
{{MAA Notice}}

Revision as of 05:36, 18 May 2016

Problem 20

If $\tan{\alpha}$ and $\tan{\beta}$ are the roots of $x^2 - px + q = 0$, and $\cot{\alpha}$ and $\cot{\beta}$ are the roots of $x^2 - rx + s = 0$, then $rs$ is necessarily

$\text{(A)} \ pq \qquad  \text{(B)} \ \frac{1}{pq} \qquad  \text{(C)} \ \frac{p}{q^2} \qquad  \text{(D)}\ \frac{q}{p^2}\qquad \text{(E)}\ \frac{p}{q}$

Solution

By Vieta's Formulas, we have $\tan(\alpha)\tan(\beta)=q$ and $\cot(\alpha)\cot(\beta)=s$. Recalling that $\cot\theta=\frac{1}{\tan\theta}$, we have $\frac{1}{\tan(\alpha)\tan(\beta)}=\frac{1}{q}=s$.

By Vieta's Formulas, we have $\tan(\alpha)+\tan(\beta)=p$ and $\cot(\alpha)+\cot(\beta)=r$. Recalling that $\cot\theta=\frac{1}{\tan\theta}$, we have $\tan(\alpha)+\tan(\beta)=r(\tan(\alpha)\tan(\beta))$. Using $\tan(\alpha)\tan(\beta)=q$ and $\tan(\alpha)+\tan(\beta)=p$, we get that $r=\frac{p}{q}$, which yields a product of $\frac{1}{q}\cdot\frac{p}{q}=\frac{p}{q^2}$.

Thus, the answer is $(\text{C}) \ \frac{p}{q^2}$

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png